A112478
Expansion of (1 + x + sqrt(1 + 6*x + x^2))/2.
Original entry on oeis.org
1, 2, -2, 6, -22, 90, -394, 1806, -8558, 41586, -206098, 1037718, -5293446, 27297738, -142078746, 745387038, -3937603038, 20927156706, -111818026018, 600318853926, -3236724317174, 17518619320890, -95149655201962, 518431875418926, -2832923350929742, 15521467648875090
Offset: 0
G.f. = 1 + 2*x - 2*x^2 + 6*x^3 - 22*x^4 + 90*x^5 - 394*x^6 + 1806*x^7 + ...
Row sums of number triangle
A112477.
-
CoefficientList[Series[(1+x+Sqrt[1+6*x+x^2])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
-
{a(n) = polcoeff((1 + x + sqrt(1 + 6*x + x^2 + x*O(x^n)))/2, n)}; /* Michael Somos, Jul 07 2020 */
A364407
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^3).
Original entry on oeis.org
1, 2, -6, 42, -350, 3234, -31878, 328426, -3494142, 38093442, -423344966, 4778162922, -54621614814, 631114404258, -7358619459654, 86472788963370, -1023093071862526, 12177054520248834, -145700860758056838, 1751559565664348842, -21145576694586256734
Offset: 0
-
A364407 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(n+3*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364407(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x*(1 + 1/A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+3*k-2, n-1))/n);
A364408
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^4).
Original entry on oeis.org
1, 2, -8, 72, -768, 9072, -114240, 1502976, -20414208, 284083968, -4029438976, 58040074752, -846682968064, 12483389708288, -185725854932992, 2784798982701056, -42039464045854720, 638415031298588672, -9746180768647217152, 149486708349609050112
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+4*k-2, n-1))/n);
A364409
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^5).
Original entry on oeis.org
1, 2, -10, 110, -1430, 20570, -315282, 5047350, -83406510, 1411954610, -24360750810, 426796726334, -7572551327430, 135790011411850, -2457028916693090, 44804882306441990, -822573909558939998, 15191515999168557410, -282038057756813698730
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+5*k-2, n-1))/n);
A364395
G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -8, 60, -552, 5648, -61712, 705104, -8321696, 100658368, -1241281536, 15546987648, -197234640384, 2529169695232, -32728878054144, 426864306146560, -5605439340018176, 74050470138645504, -983432207024885760, 13122261492710033408, -175836387068096147456
Offset: 0
-
A364395 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(2*n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364395(n),n=0..80); # R. J. Mathar, Jul 25 2023
a := n -> `if`(n=0, 1, (-1)^(n+1)*binomial(2*(n-1), n-1)*hypergeom([n-1/2, -n, n], [(n+1)/2, n/2], -1) / n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 03 2024
-
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x/A[x]*(1 + 1/A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+2*k-2, n-1))/n);
A364399
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -16, 212, -3400, 60384, -1142960, 22598832, -461250208, 9644611008, -205537131008, 4447969973888, -97482797466624, 2159242220999936, -48260706692535552, 1087076798266594048, -24652590023639251456, 562396337623786449920
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+2*k-2, n-1))/n);
A364397
G.f. satisfies A(x) = 1 + x/A(x)^2*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -12, 124, -1560, 21776, -324256, 5046096, -81086112, 1335113408, -22408067200, 381942129792, -6593494698752, 115044039049728, -2025580621035520, 35943759448886528, -642162301086308864, 11541259115333684224, -208521418711421405184
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n+2*k-2, n-1))/n);
A366326
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^2).
Original entry on oeis.org
1, 2, -3, 14, -78, 479, -3131, 21372, -150588, 1087057, -7998295, 59763129, -452257495, 3459109408, -26697940390, 207672518808, -1626400971710, 12813379464399, -101482102525511, 807524595076284, -6452856224076654, 51760509258982478, -416620859045829372
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(n+k-2, n-k)/(3*k-1));
A366452
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(5/2).
Original entry on oeis.org
1, 2, 5, 20, 90, 440, 2266, 12110, 66525, 373320, 2130865, 12332512, 72202860, 426861830, 2544727475, 15280236800, 92333523153, 561054410200, 3426075429740, 21013974400920, 129403499560500, 799733464576880, 4958649842375975, 30837325310579350
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366453,
A366454,
A366455,
A366456.
-
a(n) = sum(k=0, n, binomial(3*k/2+1, n-k)*binomial(5*k/2, k)/(3*k/2+1));
A366453
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(7/2).
Original entry on oeis.org
1, 2, 7, 42, 287, 2142, 16898, 138600, 1170037, 10098774, 88712736, 790540296, 7128879940, 64933227996, 596523624144, 5520761026854, 51424824505054, 481741853731110, 4535711525840271, 42897532229559714, 407358615638833341, 3882484733036731500
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366452,
A366454,
A366455,
A366456.
-
a(n) = sum(k=0, n, binomial(5*k/2+1, n-k)*binomial(7*k/2, k)/(5*k/2+1));
Showing 1-10 of 16 results.
Comments