A364393
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -4, 20, -120, 800, -5696, 42416, -326304, 2572992, -20685696, 168920704, -1397257472, 11682707712, -98578346496, 838369268480, -7178912946688, 61842549386240, -535575159363584, 4660216874719232, -40722264390799360, 357204260381327360
Offset: 0
-
A364393 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364393(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
m = 22;
A[_] = 1;
Do[A[x_] = 1 + x*(1 + 1/A[x]^2) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Sep 05 2023 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+2*k-2, n-1))/n);
A364395
G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -8, 60, -552, 5648, -61712, 705104, -8321696, 100658368, -1241281536, 15546987648, -197234640384, 2529169695232, -32728878054144, 426864306146560, -5605439340018176, 74050470138645504, -983432207024885760, 13122261492710033408, -175836387068096147456
Offset: 0
-
A364395 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(2*n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364395(n),n=0..80); # R. J. Mathar, Jul 25 2023
a := n -> `if`(n=0, 1, (-1)^(n+1)*binomial(2*(n-1), n-1)*hypergeom([n-1/2, -n, n], [(n+1)/2, n/2], -1) / n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 03 2024
-
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x/A[x]*(1 + 1/A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+2*k-2, n-1))/n);
A364399
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -16, 212, -3400, 60384, -1142960, 22598832, -461250208, 9644611008, -205537131008, 4447969973888, -97482797466624, 2159242220999936, -48260706692535552, 1087076798266594048, -24652590023639251456, 562396337623786449920
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+2*k-2, n-1))/n);
A371893
G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 + A(x)^4).
Original entry on oeis.org
1, 2, 0, 16, -32, 336, -1472, 10944, -63744, 441088, -2866688, 19772416, -134832128, 941381632, -6585720832, 46607831040, -331406262272, 2373110628352, -17072541007872, 123438375763968, -896088779128832, 6530356893777920, -47752086733717504
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n-4*k-2, n-1))/n);
A371932
G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 + A(x)^5).
Original entry on oeis.org
1, 2, 2, 26, 50, 706, 1650, 24282, 62370, 940610, 2554530, 39150810, 110311762, 1709993346, 4945525650, 77314273562, 228002115650, 3587763069826, 10741365151810, 169903043416730, 514833595840370, 8177978884039490, 25025386537586610
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n-5*k-2, n-1))/n);
Showing 1-5 of 5 results.