A364394
G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)).
Original entry on oeis.org
1, 2, -6, 34, -238, 1858, -15510, 135490, -1223134, 11320066, -106830502, 1024144482, -9945711566, 97634828354, -967298498358, 9659274283650, -97119829841854, 982391779220482, -9990160542904134, 102074758837531810, -1047391288012377774, 10788532748880319298
Offset: 0
-
A364394 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(2*n+k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364394(n),n=0..80); # R. J. Mathar, Jul 25 2023
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+k-2, n-1))/n);
A364399
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -16, 212, -3400, 60384, -1142960, 22598832, -461250208, 9644611008, -205537131008, 4447969973888, -97482797466624, 2159242220999936, -48260706692535552, 1087076798266594048, -24652590023639251456, 562396337623786449920
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+2*k-2, n-1))/n);
A364396
G.f. satisfies A(x) = 1 + x/A(x)^2*(1 + 1/A(x)).
Original entry on oeis.org
1, 2, -10, 86, -902, 10506, -130594, 1697006, -22774094, 313205522, -4391039930, 62522730310, -901680559574, 13143551082138, -193339856081490, 2866341942620382, -42784807130635678, 642457682754511906, -9698259831536382826, 147091417979841002294
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n+k-2, n-1))/n);
A364400
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)^3).
Original entry on oeis.org
1, 2, -18, 270, -4902, 98538, -2110794, 47227846, -1090742094, 25806364434, -622267199554, 15236456140542, -377814588773622, 9468373002766074, -239434464005544570, 6101951612867546166, -156561081975745809566, 4040863076496835880226
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+3*k-2, n-1))/n);
A371562
G.f. A(x) satisfies A(x) = 1 + x/A(x)^3 * (1 + A(x)^5).
Original entry on oeis.org
1, 2, -2, 30, -166, 1514, -12474, 114006, -1050830, 10005138, -96772786, 951500686, -9469982966, 95267209850, -966979784554, 9891522355270, -101866781649310, 1055294818173474, -10989809960251490, 114983445265899774, -1208092406024272710
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n-5*k-2, n-1))/n);
Showing 1-5 of 5 results.