cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364493 a(n) = A364491(n) * A364492(n).

Original entry on oeis.org

0, 2, 2, 1, 2, 45, 1, 35, 2, 3, 45, 275, 1, 195, 35, 105, 2, 1377, 3, 2375, 45, 175, 275, 1127, 1, 45, 195, 945, 35, 609, 105, 341, 2, 891, 1377, 875, 3, 13875, 2375, 13377, 45, 9225, 175, 10535, 275, 735, 1127, 5687, 1, 6615, 45, 8925, 195, 5565, 945, 35, 35, 399, 609, 3245, 105, 2013, 341, 819, 2, 47385, 891
Offset: 0

Views

Author

Antti Karttunen, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A054429(n) = ((3<<#binary(n\2))-n-1);
    A163511(n) = if(!n,1,A005940(1+A054429(n)))
    A364493(n) = { my(u=A163511(n)); (n/gcd(n,u))*(u/gcd(n,u)); };
    
  • Python
    from math import gcd
    from sympy import nextprime
    def A364493(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return n*c*p//gcd(c*p,n)**2 # Chai Wah Wu, Jul 26 2023

Formula

a(n) = lcm(n, A163511(n)) / A364255(n).
a(n) = 1 <=> A364258(n) = 0 <=> A364288(n) = 0.