cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A364494 Numbers k such that k divides A163511(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 105, 128, 144, 192, 210, 256, 288, 384, 420, 429, 512, 576, 768, 840, 858, 1024, 1152, 1365, 1536, 1617, 1680, 1716, 2048, 2304, 2730, 3072, 3234, 3360, 3432, 3887, 4096, 4235, 4608, 5460, 6144, 6468, 6720, 6864, 7774, 8192, 8470, 9216, 10829, 10920, 12288
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2023

Keywords

Comments

If n is present, then 2*n is also present, and vice versa.
A007283 is included as a subsequence, because it gives the known fixed points of map n -> A163511(n).

Crossrefs

Positions of 1's in A364491.
Cf. A163511.
Subsequences: A007283, A029744, A364495 (odd terms).
Cf. also A364295, A364496, A364497.

Programs

A364545 Odd numbers k such that k divides A005940(k).

Original entry on oeis.org

1, 3, 5, 125, 245, 375, 715, 845, 847, 1215, 2873, 11583, 12635, 21879, 24255, 31213, 33495, 36125, 42875, 48125, 48841, 71269, 100793, 102245, 104907, 157035, 173641, 191607, 206045, 240787, 244205, 251459, 302575, 313937, 351509, 359513, 375687, 384475, 388531, 417605, 419957, 444889, 468999, 521703, 586177, 635375
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Odd terms in A364544.
Cf. also A364495, A364547.

Programs

  • Mathematica
    nn = 2^20; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[1, nn, 2], Divisible[a[#], #] &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364545(n) = ((n%2)&&!(A005940(n)%n));

A364963 Odd numbers k such that k is a multiple of A163511(k).

Original entry on oeis.org

3, 16383, 536870895, 2147482623
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2023

Keywords

Comments

Sequence A243071(A364498(n)), for n > 1, sorted into ascending order, therefore terms 151115727451794287099901, 60708402882054033466233184588234965832575213720379360039119137804340758912662765515 (and many others that do not fit in this space) are also present.
Consider the sequence 1 + 5*2^k (with k>=1): 11, 21, 41, 81, 161, 321, etc, (A083575(n) from n>=1), and compare to the sequence A163511(1 + 5*2^k): 25, 75, 225, 675, 2025, 6075, etc (= 3^(k-1) * 25). Clearly, the first sequence does not contain any multiples of 5, while all the terms in the second one are multiples of 25, and thus of 5 also.
Then consider sequences 1 + 2*(1 + 11*2^k): 47, 91, 179, 355, 707, 1411, etc., and A163511(1 + 2*(1 + 11*2^k)): 121, 605, 3025, 15125, 75625, 378125, etc. The terms in the first one are never multiples of 11, while the terms of second one are all multiples of 121, thus of 11 also.
Consider also sequences 1 + (2^k)*(1+2*11): 47, 93, 185, 369, 737, 1473, 2945, 5889, 11777, 23553, 47105, 94209, 188417, 376833, 753665, 1507329, etc, and 1 + (2^k)*(1+4*11): 91, 181, 361, 721, 1441, 2881, 5761, 11521, 23041, 46081, 92161, 184321, 368641, 737281, 1474561, 2949121, etc. The only time their terms are multiples of 11 is when k = 5, 15, 25, ..., 5 + 10*j, j>= 0, while for sequences A163511(1 + (2^k)*(1+2*11)): 121, 363, 1089, 3267, 9801, 29403, etc, and A163511(1 + (2^k)*(1+4*11)): 605, 1815, 5445, 16335, 49005, 147015, etc, all the terms are multiples of 121, thus of 11 also.
There are numerous other such correspondences that forbid the occurrence of factor x in n, when n is a member of a certain subset of odd numbers, while on the other hand, force the same factor x to be present in A163511(n), thus making it impossible that n were a multiple of A163511(n) in those cases. However, this sequence shows that such subsets do not completely cover all odd numbers. Similar observation applies to Doudna sequence (see A364547).

Examples

			        Term [in binary]                         Factorization         A163511(Term)
           3 [11]                                (prime)             -> 3
       16383 [11111111111111]                  = 3*43*127            -> 43
   536870895 [11111111111111111111111101111]   = 3*5*11*47*107*647   -> 1177 = 11*107
  2147482623 [1111111111111111111101111111111] = 3*11*13*31*113*1429 -> 3503 = 31*113
		

Crossrefs

Odd terms in A364496.
Cf. also A364495, A364547.

A364296 Odd numbers k for which A292943(k) == A292944(k).

Original entry on oeis.org

1, 3, 9, 45, 165, 189, 114595, 330993, 1277601
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2023

Keywords

Comments

The first six terms are binary palindromes, in A006995. Most are multiples of 3.
a(10) > 2^21 if it exists.

Crossrefs

Odd terms in A364295.
Cf. also A364495.

A364965 Odd numbers k such that k is a multiple of A243071(k).

Original entry on oeis.org

3, 27, 315, 3003, 42757, 72765, 195195, 799425, 13873275, 18131225
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2023

Keywords

Crossrefs

Odd terms in A364964.
Sequence A163511(A364495(n)), for n>1, sorted into ascending order.
Cf. A243071.
Cf. also A364498, A364551.

Programs

  • PARI
    A243071(n) = if(n<=2, n-1, my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p*p2*(2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); ((3<<#binary(res\2))-res-1)); \\ (Combining programs given in A156552 and A054429)
    isA364965(n) = ((n>1)&&(n%2)&&!(n%A243071(n)));

A374469 The odd part of gcd(n, A163511(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 9, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 5, 1, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 9, 1, 1, 5, 1, 7, 1, 1, 1, 27, 1, 1, 3, 5, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Aug 07 2024

Keywords

Crossrefs

Cf. A000265, A006519, A007814, A163511, A364255, A364495 (fixed points).

Programs

Formula

a(n) = A000265(A364255(n)) = A000265(gcd(n, A163511(n))).
For n >= 1, a(n) = A364255(n) / A006519(n).
For n >= 0, a(2*n) = a(n).
Showing 1-6 of 6 results.