cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A364551 Odd numbers k such that k is a multiple of A005941(k).

Original entry on oeis.org

1, 3, 5, 3125, 7875, 12005, 13365, 22869, 23595, 46475, 703395, 985439, 2084775, 2675673, 13619125, 19144125
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Odd numbers k such that k is a multiple of 1+A156552(k).
Sequence A005940(A364545(n)) sorted into ascending order.
This is a subsequence of A364561, so the comments given in A364564 apply also here (see also the example section).

Examples

			In all these cases, the right hand side is a divisor of the left hand side:
      Term   (and its factorization)             A005941(term)
         1   (unity)                         ->    1
         3   (prime)                         ->    3
         5   (prime)                         ->    5
      3125 = 5^5                             ->    125 = 5^3
      7875 = 3^2 * 5^3 * 7                   ->    375 = 3 * 5^3
     12005 = 5 * 7^4                         ->    245 = 5 * 7^2
     13365 = 3^5 * 5 * 11                    ->    1215 = 3^5 * 5
     22869 = 3^3 * 7 * 11^2                  ->    847 = 7 * 11^2
     23595 = 3 * 5 * 11^2 * 13               ->    715 = 5 * 11 * 13
     46475 = 5^2 * 11 * 13^2                 ->    845 = 5 * 13^2
    703395 = 3^2 * 5 * 7^2 * 11 * 29         ->    33495 = 3 * 5 * 7 * 11 * 29
    985439 = 7^3 * 13^2 * 17                 ->    2873 = 13^2 * 17
   2084775 = 3 * 5^2 * 7 * 11 * 19^2         ->    12635 = 5 * 7 * 19^2
   2675673 = 3^5 * 7 * 11^2 * 13             ->    11583 = 3^4 * 11 * 13
  13619125 = 5^3 * 13 * 17^2 * 29            ->    36125 = 5^3 * 17^2
  19144125 = 3^2 * 5^3 * 7 * 11 * 13 * 17    ->    21879 = 3^2 * 11 * 13 * 17.
		

Crossrefs

Subsequence of A364561, which is a subsequence of A364560.

Programs

  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    isA364551(n) = ((n%2)&&!(n%A005941(n)));

A364495 Odd numbers k such that k divides A163511(k).

Original entry on oeis.org

1, 3, 9, 105, 429, 1365, 1617, 3887, 4235, 10829, 14025, 17745, 21125, 22627, 38025, 54587, 70805, 100555, 115159, 147875, 168751, 169065, 175769, 181447, 181545, 291525, 297297, 303875, 338675, 350987, 501787, 513825, 518035, 549081, 560947, 566865, 594473, 624169, 676039, 735875, 745147, 831875, 869193, 957125
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2023

Keywords

Examples

			For n = 513825 = 3 * 5^2 * 13 * 17 * 31, A163511(n) = 13873275 = 3^4 * 5^2 * 13 * 17 * 31, so A163511(n)/n = 27 (which is an integer), and therefore 513825 is included in this sequence.
		

Crossrefs

Odd terms in A364494.
After 1, sequence A243071(A364965(n)), for n>=1, sorted into ascending order.
Cf. A163511.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A054429(n) = ((3<<#binary(n\2))-n-1);
    A163511(n) = if(!n,1,A005940(1+A054429(n)))
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    isA364495(n) = ((n%2)&&!(A163511(n)%n));

A364561 Odd numbers k for which A156552(k) < k.

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 25, 27, 35, 45, 49, 55, 63, 75, 77, 81, 91, 99, 105, 121, 125, 135, 143, 147, 165, 169, 175, 187, 189, 195, 221, 225, 231, 243, 245, 273, 275, 289, 297, 315, 323, 325, 343, 351, 357, 363, 375, 385, 405, 425, 429, 441, 455, 495, 507, 525, 539, 561, 567, 585, 595, 605, 625, 627, 637, 663, 665
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Odd numbers k such that A005941(k) <= k.

Crossrefs

Odd terms in A364560.
Cf. A005940, A005941, A156552, A364545, A364564 (largest prime factor).
Cf. also A364551, A364576 (subsequences).

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    isA364561(n) = ((n%2)&&(A156552(n) < n));

A364547 Odd numbers k such that k is a multiple of A005940(k).

Original entry on oeis.org

1, 3, 5, 1035, 524295, 16777217
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005941(A364549(.)) sorted into ascending order.
Those terms of A000051 (= 2^k + 1) are included that have A000040(1+k) as one of their prime factors.
a(7) > 402653184.
See also comments in A364963. - Antti Karttunen, Jan 12 2024

Examples

			1035 is included because 1034 in binary is "10000001010", which Doudna isomorphism maps to 345 = 3*5*23, which thus divides 1035 (= 3^2 * 5 * 23). Note that there are six 0's in the binary representation between its most significant bit and the trailing "1010", thus we get the prime factors A000040(1+1) = 3, A000040(1+1+1) = 5 and A000040(1+1+1+6) = 23.
524295 is included because 524294 in binary is "10000000000000000110", which Doudna isomorphism maps to 549 = 3^2 * 61, which thus divides 524295 (= 3^2 * 5 * 61 * 191). Note that there are sixteen 0's in the binary representation between its most significant bit and the trailing "110", thus we get the prime factors A000040(2) = 3 and A000040(2+16) = 61.
16777217 = 2^24 + 1 is included because A000040(1+24) = 97, and 16777217 = 97*257*673.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^20 + 2; Array[Set[a[#], #] &, 2]; {1}~Join~Reap[Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], a[n] = k = Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]; If[Divisible[n, a[n]], Sow[n]]], {n, 3, nn}] ][[-1, 1]] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364547(n) = ((n%2)&&!(n%A005940(n)));

A364544 Numbers k such that k divides A005940(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 125, 128, 160, 192, 245, 250, 256, 320, 375, 384, 490, 500, 512, 640, 715, 750, 768, 845, 847, 980, 1000, 1024, 1215, 1280, 1430, 1500, 1536, 1690, 1694, 1960, 2000, 2048, 2430, 2560, 2860, 2873, 3000, 3072, 3380, 3388, 3920, 4000, 4096, 4860, 5120
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

If k is a term, then also 2*k is present in this sequence, and vice versa.
A029747 is included as a subsequence, because it gives the known fixed points of map n -> A005940(n).

Crossrefs

Positions of 1's in A364501.
Subsequence of A364542.
Subsequences: A029747, A364545 (odd terms).
Cf. A005940.
Cf. also A364494, A364546.

Programs

  • Mathematica
    nn = 5120; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[nn], Divisible[a[#], #] &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364544(n) = !(A005940(n)%n);
Showing 1-5 of 5 results.