cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005941 Inverse of the Doudna sequence A005940.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 17, 12, 33, 18, 11, 16, 65, 14, 129, 20, 19, 34, 257, 24, 13, 66, 15, 36, 513, 22, 1025, 32, 35, 130, 21, 28, 2049, 258, 67, 40, 4097, 38, 8193, 68, 23, 514, 16385, 48, 25, 26, 131, 132, 32769, 30, 37, 72, 259, 1026, 65537, 44, 131073, 2050, 39, 64
Offset: 1

Views

Author

Keywords

Comments

a(2^k) = 2^k. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
Question: Is there a simple proof that a(c) = c would never allow an odd composite c as a solution? See also A364551. - Antti Karttunen, Jul 30 2023

References

  • J. H. Conway, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A103969. Inverse of A005940. One more than A156552.
Cf. A364559 [= a(n)-n], A364557 (Möbius transform), A364558.
Cf. A029747 [known positions where a(n) = n], A364560 [where a(n) <= n], A364561 [where a(n) <= n and n is odd], A364562 [where a(n) > n], A364548 [where n divides a(n)], A364549 [where odd n divides a(n)], A364550 [where a(n) divides n], A364551 [where a(n) divides n and n is odd].

Programs

  • Maple
    A005941 := proc(n)
        local k ;
        for k from 1 do
        if A005940(k) = n then # code reuse
            return k;
        end if;
        end do ;
    end proc: # R. J. Mathar, Mar 06 2010
  • Mathematica
    f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; t = Table[ f[n], {n, 10^5}]; Flatten[ Table[ Position[t, n, 1, 1], {n, 64}]] (* Robert G. Wilson v, Feb 22 2005 *)
  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552) - Antti Karttunen, Jul 30 2023
  • Python
    from sympy import primepi, factorint
    def A005941(n): return sum((1<Chai Wah Wu, Mar 11 2023
    
  • Scheme
    (define (A005941 n) (+ 1 (A156552 n))) ;; Antti Karttunen, Jun 26 2014
    

Formula

a(n) = h(g(n,1,1), 0) / 2 + 1 with h(n, m) = if n=0 then m else h(floor(n/2), 2*m + n mod 2) and g(n, i, x) = if n=1 then x else (if n mod prime(i) = 0 then g(n/prime(i), i, 2*x+1) else g(n, i+1, 2*x)). - Reinhard Zumkeller, Aug 23 2006
a(n) = 1 + A156552(n). - Antti Karttunen, Jun 26 2014

Extensions

More terms from Robert G. Wilson v, Feb 22 2005
a(61) inserted by R. J. Mathar, Mar 06 2010

A364551 Odd numbers k such that k is a multiple of A005941(k).

Original entry on oeis.org

1, 3, 5, 3125, 7875, 12005, 13365, 22869, 23595, 46475, 703395, 985439, 2084775, 2675673, 13619125, 19144125
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Odd numbers k such that k is a multiple of 1+A156552(k).
Sequence A005940(A364545(n)) sorted into ascending order.
This is a subsequence of A364561, so the comments given in A364564 apply also here (see also the example section).

Examples

			In all these cases, the right hand side is a divisor of the left hand side:
      Term   (and its factorization)             A005941(term)
         1   (unity)                         ->    1
         3   (prime)                         ->    3
         5   (prime)                         ->    5
      3125 = 5^5                             ->    125 = 5^3
      7875 = 3^2 * 5^3 * 7                   ->    375 = 3 * 5^3
     12005 = 5 * 7^4                         ->    245 = 5 * 7^2
     13365 = 3^5 * 5 * 11                    ->    1215 = 3^5 * 5
     22869 = 3^3 * 7 * 11^2                  ->    847 = 7 * 11^2
     23595 = 3 * 5 * 11^2 * 13               ->    715 = 5 * 11 * 13
     46475 = 5^2 * 11 * 13^2                 ->    845 = 5 * 13^2
    703395 = 3^2 * 5 * 7^2 * 11 * 29         ->    33495 = 3 * 5 * 7 * 11 * 29
    985439 = 7^3 * 13^2 * 17                 ->    2873 = 13^2 * 17
   2084775 = 3 * 5^2 * 7 * 11 * 19^2         ->    12635 = 5 * 7 * 19^2
   2675673 = 3^5 * 7 * 11^2 * 13             ->    11583 = 3^4 * 11 * 13
  13619125 = 5^3 * 13 * 17^2 * 29            ->    36125 = 5^3 * 17^2
  19144125 = 3^2 * 5^3 * 7 * 11 * 13 * 17    ->    21879 = 3^2 * 11 * 13 * 17.
		

Crossrefs

Subsequence of A364561, which is a subsequence of A364560.

Programs

  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    isA364551(n) = ((n%2)&&!(n%A005941(n)));

A364560 Numbers k for which A156552(k) < k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 55, 60, 63, 64, 70, 72, 75, 77, 80, 81, 84, 90, 91, 96, 98, 99, 100, 105, 108, 110, 120, 121, 125, 126, 128, 135, 140, 143, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 180, 182, 187, 189, 192, 195, 196
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Numbers k such that A005941(k) <= k.
Sequence A005940(A364542(.)) sorted into ascending order.
If k is a term, then also 2*k is present in this sequence, and vice versa.

Crossrefs

Positions of nonpositive terms in A364559.
Cf. A005941, A156552, A364542, A364562 (complement).
Subsequences: A029747, A364550, A364561 (odd terms).

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    isA364560(n) = (A156552(n) < n);

A364576 Starting from k=1, each subsequent term is the next larger odd k such that A156552(k) < k and the ratio A156552(k)/k is nearer to 1.0 than for any previous k in the sequence.

Original entry on oeis.org

1, 3, 5, 21, 323, 66297, 139965, 263375, 264845, 528581
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2023

Keywords

Comments

All the odd fixed points of map n -> A005940(n) [and its inverse, map n -> A005941(n)] are included in this sequence. This includes both the known odd fixed points, 1, 3 and 5 (see A029747), and any additional hypothetical odd composites that would satisfy the condition n == A005940(n).
This is a subsequence of A364561, so the comments given in A364564 apply also here.

Examples

			       k  A156552(k)    A156552(k)/k  k-(1+A156552(k)) factorization of k
       1:       0         0                0
       3:       2         0.6666667        0
       5:       4         0.8              0
      21:      18         0.8571429        2           (3 * 7)
     323:     320         0.9907121        2           (17 * 19)
   66297:   65714         0.9912062      582           (3 * 7^2 * 11 * 41)
  139965:  139306         0.9952917      658           (3 * 5 * 7 * 31 * 43)
  263375:  262364         0.9961614     1010           (5^3 * 7^2 * 43)
  264845:  264244         0.9977307      600           (5 * 7^2 * 23 * 47)
  528581:  528576         0.9999905        4           (17^2 * 31 * 59).
		

Crossrefs

Subsequence of A364561.
Cf. also A364551, A364564, A364572.

A364564 Largest prime factor computed for those odd numbers k for which A156552(k) < k.

Original entry on oeis.org

1, 3, 5, 3, 5, 7, 5, 3, 7, 5, 7, 11, 7, 5, 11, 3, 13, 11, 7, 11, 5, 5, 13, 7, 11, 13, 7, 17, 7, 13, 17, 5, 11, 3, 7, 13, 11, 17, 11, 7, 19, 13, 7, 13, 17, 11, 5, 11, 5, 17, 13, 7, 13, 11, 13, 7, 11, 17, 7, 13, 17, 11, 5, 19, 13, 17, 19, 5, 11, 13, 3, 7, 19, 17, 13, 11, 17, 13, 11, 17, 7, 11, 19, 17, 7, 19, 13, 13
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

These primes must stay reasonably small, but how small?
See also the example section of A364551.

Crossrefs

Formula

a(n) = A006530(A364561(n)).
Showing 1-5 of 5 results.