cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A364545 Odd numbers k such that k divides A005940(k).

Original entry on oeis.org

1, 3, 5, 125, 245, 375, 715, 845, 847, 1215, 2873, 11583, 12635, 21879, 24255, 31213, 33495, 36125, 42875, 48125, 48841, 71269, 100793, 102245, 104907, 157035, 173641, 191607, 206045, 240787, 244205, 251459, 302575, 313937, 351509, 359513, 375687, 384475, 388531, 417605, 419957, 444889, 468999, 521703, 586177, 635375
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Odd terms in A364544.
Cf. also A364495, A364547.

Programs

  • Mathematica
    nn = 2^20; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[1, nn, 2], Divisible[a[#], #] &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364545(n) = ((n%2)&&!(A005940(n)%n));

A364546 Numbers k such that k is a multiple of A005940(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 512, 640, 768, 1024, 1035, 1280, 1536, 2048, 2070, 2560, 3072, 4096, 4140, 5120, 6144, 8192, 8280, 10240, 12288, 16384, 16560, 20480, 24576, 32768, 33120, 40960, 49152, 65536, 66240, 81920, 98304, 131072, 132480, 163840
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005941(A364548(.)) sorted into ascending order.
If k is a term, then also 2*k is present in this sequence, and vice versa.
A029747 is included as a subsequence, because it gives the known fixed points of map n -> A005940(n).

Crossrefs

Positions of 1's in A364502.
Subsequence of A364541.
Subsequences: A029747, A364547 (odd terms).
Cf. also A364496.

Programs

  • Mathematica
    nn = 2^18; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[nn], Divisible[#, a[#]] &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364546(n) = !(n%A005940(n));

A364963 Odd numbers k such that k is a multiple of A163511(k).

Original entry on oeis.org

3, 16383, 536870895, 2147482623
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2023

Keywords

Comments

Sequence A243071(A364498(n)), for n > 1, sorted into ascending order, therefore terms 151115727451794287099901, 60708402882054033466233184588234965832575213720379360039119137804340758912662765515 (and many others that do not fit in this space) are also present.
Consider the sequence 1 + 5*2^k (with k>=1): 11, 21, 41, 81, 161, 321, etc, (A083575(n) from n>=1), and compare to the sequence A163511(1 + 5*2^k): 25, 75, 225, 675, 2025, 6075, etc (= 3^(k-1) * 25). Clearly, the first sequence does not contain any multiples of 5, while all the terms in the second one are multiples of 25, and thus of 5 also.
Then consider sequences 1 + 2*(1 + 11*2^k): 47, 91, 179, 355, 707, 1411, etc., and A163511(1 + 2*(1 + 11*2^k)): 121, 605, 3025, 15125, 75625, 378125, etc. The terms in the first one are never multiples of 11, while the terms of second one are all multiples of 121, thus of 11 also.
Consider also sequences 1 + (2^k)*(1+2*11): 47, 93, 185, 369, 737, 1473, 2945, 5889, 11777, 23553, 47105, 94209, 188417, 376833, 753665, 1507329, etc, and 1 + (2^k)*(1+4*11): 91, 181, 361, 721, 1441, 2881, 5761, 11521, 23041, 46081, 92161, 184321, 368641, 737281, 1474561, 2949121, etc. The only time their terms are multiples of 11 is when k = 5, 15, 25, ..., 5 + 10*j, j>= 0, while for sequences A163511(1 + (2^k)*(1+2*11)): 121, 363, 1089, 3267, 9801, 29403, etc, and A163511(1 + (2^k)*(1+4*11)): 605, 1815, 5445, 16335, 49005, 147015, etc, all the terms are multiples of 121, thus of 11 also.
There are numerous other such correspondences that forbid the occurrence of factor x in n, when n is a member of a certain subset of odd numbers, while on the other hand, force the same factor x to be present in A163511(n), thus making it impossible that n were a multiple of A163511(n) in those cases. However, this sequence shows that such subsets do not completely cover all odd numbers. Similar observation applies to Doudna sequence (see A364547).

Examples

			        Term [in binary]                         Factorization         A163511(Term)
           3 [11]                                (prime)             -> 3
       16383 [11111111111111]                  = 3*43*127            -> 43
   536870895 [11111111111111111111111101111]   = 3*5*11*47*107*647   -> 1177 = 11*107
  2147482623 [1111111111111111111101111111111] = 3*11*13*31*113*1429 -> 3503 = 31*113
		

Crossrefs

Odd terms in A364496.
Cf. also A364495, A364547.

A364549 Odd numbers k that divide A005941(k).

Original entry on oeis.org

1, 3, 5, 97, 345, 549, 1093, 64621, 671515, 3280317, 8957089
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005940(A364547(.)) sorted into ascending order.
Odd numbers k such that k divides 1+A156552(k).
The first ten terms factored:
1 (unity)
3 (prime)
5 (prime)
97 (prime)
345 = 3*5*23
549 = 3^2 * 61
1093 (prime)
64621 (prime)
671515 = 5*13*10331
3280317 = 3*79*13841.
Primes p present are those that occur as factors of 1 + 2^(A000720(p)-1).

Crossrefs

Odd terms in A364548.
Cf. also A364498, A364547, A364551.

Programs

  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    isA364549(n) = ((n%2)&&!(A005941(n)%n));
    
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A364549_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue+(startvalue&1^1),1),2):
            if not (sum(pow(2,i+int(primepi(p))-1,n) for i, p in enumerate(factorint(n, multiple=True)))+1) % n:
                yield n
    A364549_list = list(islice(A364549_gen(),8)) # Chai Wah Wu, Jul 28 2023

Extensions

a(11) from Chai Wah Wu, Jul 28 2023

A364543 Odd numbers k for which A005940(k) <= k.

Original entry on oeis.org

1, 3, 5, 9, 17, 33, 35, 65, 67, 69, 129, 131, 133, 135, 137, 257, 259, 261, 263, 265, 267, 273, 289, 385, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 545, 577, 641, 769, 1025, 1027, 1029, 1031, 1033, 1035, 1037, 1039, 1041, 1043, 1045, 1047, 1057, 1059, 1089, 1091, 1153, 1281, 1537, 2049, 2051, 2053, 2055
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2023

Keywords

Crossrefs

Odd terms of A364541.
Cf. A005940, A364563 [= -A364499(a(n))].
Subsequences: A364547, A364573.
Cf. also A364293.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364543(n) = ((n%2)&&(A005940(n)<=n));
Showing 1-5 of 5 results.