cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A365431 Lexicographically earliest infinite sequence such that a(i) = a(j) => A364502(i) = A364502(j) for all i, j >= 1, where A364502(n) is the denominator of n / A005940(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 2, 2, 1, 6, 3, 7, 1, 8, 4, 9, 1, 10, 5, 5, 2, 11, 2, 12, 1, 13, 6, 14, 3, 15, 7, 7, 1, 16, 8, 17, 4, 18, 9, 19, 1, 20, 10, 10, 5, 21, 5, 9, 2, 22, 11, 23, 2, 24, 12, 25, 1, 26, 13, 27, 6, 28, 14, 29, 3, 30, 15, 6, 7, 5, 7, 31, 1, 32, 16, 33, 8, 16, 17, 17, 4, 34, 18, 35, 9, 36, 19, 12, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 07 2023

Keywords

Comments

Restricted growth sequence transform of A364502, or equally, of A365432.
For all i, j: A003602(i) = A003602(j) => a(i) = a(j).
Compare to the scatter plots of A365393 and A365715.

Crossrefs

Cf. also A365393, A365715 (analogous sequence for Doudna variant D(3)).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364502(n) = { my(u=A005940(n)); (u / gcd(n, u)); };
    v365431 = rgs_transform(vector(up_to,n,A364502(n)));
    A365431(n) = v365431[n];

A365432 a(n) = A156552(A364502(n)), where A364502(n) = A005940(n) / gcd(n, A005940(n)), and A156552 is the inverse of offset-0 version of Doudna-sequence A005940.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 0, 8, 0, 10, 0, 12, 6, 6, 0, 16, 8, 18, 0, 4, 10, 22, 0, 24, 12, 12, 6, 28, 6, 30, 0, 32, 16, 34, 8, 36, 18, 18, 0, 40, 4, 42, 10, 20, 22, 46, 0, 48, 24, 24, 12, 52, 12, 22, 6, 56, 28, 58, 6, 60, 30, 14, 0, 64, 32, 66, 16, 68, 34, 70, 8, 72, 36, 16, 18, 12, 18, 78, 0, 80, 40, 82, 4, 40, 42, 42, 10
Offset: 1

Views

Author

Antti Karttunen, Sep 07 2023

Keywords

Crossrefs

Cf. A005940, A364500, A341520, A365430, A365431 (rgs-transform).

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364502(n) = { my(u=A005940(n)); (u / gcd(n, u)); };
    A365432(n) = A156552(A364502(n));

Formula

For all n >= 1, a(n) <= n-1 and A341520(a(n), A365430(n)) = n-1.

A364500 a(n) = gcd(n, A005940(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 1, 10, 1, 12, 1, 2, 3, 16, 1, 2, 1, 20, 7, 2, 1, 24, 1, 2, 3, 4, 1, 6, 1, 32, 1, 2, 1, 4, 1, 2, 3, 40, 1, 14, 1, 4, 5, 2, 1, 48, 1, 2, 3, 4, 1, 6, 5, 8, 1, 2, 1, 12, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 15, 4, 11, 6, 1, 80, 1, 2, 1, 28, 5, 2, 3, 8, 1, 10, 7, 4, 1, 2, 5, 96, 1, 2, 33, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 100; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[GCD[a[#], #] &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364500(n) = gcd(n, A005940(n));
    
  • PARI
    A364500(n) = { my(orgn=n,p=2,rl=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), rl++; if(1==(n%4), z *= p^min(rl,valuation(orgn,p)); rl=0)); n>>=1); (z); };

Formula

a(n) = gcd(n, A364499(n)) = gcd(A005940(n), A364499(n)).
a(n) = n / A364501(n) = A005940(n) / A364502(n).

A364501 a(n) = n / gcd(n, A005940(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 7, 1, 9, 1, 11, 1, 13, 7, 5, 1, 17, 9, 19, 1, 3, 11, 23, 1, 25, 13, 9, 7, 29, 5, 31, 1, 33, 17, 35, 9, 37, 19, 13, 1, 41, 3, 43, 11, 9, 23, 47, 1, 49, 25, 17, 13, 53, 9, 11, 7, 57, 29, 59, 5, 61, 31, 7, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 5, 19, 7, 13, 79, 1, 81, 41, 83, 3, 17, 43, 29, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Numerator of n / A005940(n).

Crossrefs

Cf. A005940, A364500, A364502 (denominators), A364544 (positions of 1's).
Cf. also A364491.

Programs

  • Mathematica
    nn = 89; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[#/GCD[a[#], #] &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364501(n) = (n / gcd(n, A005940(n)));
    
  • PARI
    A364501(n) = { my(orgn=n,p=2,rl=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), rl++; if(1==(n%4), z *= p^min(rl,valuation(orgn,p)); rl=0)); n>>=1); (orgn/z); };

A364546 Numbers k such that k is a multiple of A005940(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 512, 640, 768, 1024, 1035, 1280, 1536, 2048, 2070, 2560, 3072, 4096, 4140, 5120, 6144, 8192, 8280, 10240, 12288, 16384, 16560, 20480, 24576, 32768, 33120, 40960, 49152, 65536, 66240, 81920, 98304, 131072, 132480, 163840
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005941(A364548(.)) sorted into ascending order.
If k is a term, then also 2*k is present in this sequence, and vice versa.
A029747 is included as a subsequence, because it gives the known fixed points of map n -> A005940(n).

Crossrefs

Positions of 1's in A364502.
Subsequence of A364541.
Subsequences: A029747, A364547 (odd terms).
Cf. also A364496.

Programs

  • Mathematica
    nn = 2^18; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[nn], Divisible[#, a[#]] &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364546(n) = !(n%A005940(n));

A364547 Odd numbers k such that k is a multiple of A005940(k).

Original entry on oeis.org

1, 3, 5, 1035, 524295, 16777217
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005941(A364549(.)) sorted into ascending order.
Those terms of A000051 (= 2^k + 1) are included that have A000040(1+k) as one of their prime factors.
a(7) > 402653184.
See also comments in A364963. - Antti Karttunen, Jan 12 2024

Examples

			1035 is included because 1034 in binary is "10000001010", which Doudna isomorphism maps to 345 = 3*5*23, which thus divides 1035 (= 3^2 * 5 * 23). Note that there are six 0's in the binary representation between its most significant bit and the trailing "1010", thus we get the prime factors A000040(1+1) = 3, A000040(1+1+1) = 5 and A000040(1+1+1+6) = 23.
524295 is included because 524294 in binary is "10000000000000000110", which Doudna isomorphism maps to 549 = 3^2 * 61, which thus divides 524295 (= 3^2 * 5 * 61 * 191). Note that there are sixteen 0's in the binary representation between its most significant bit and the trailing "110", thus we get the prime factors A000040(2) = 3 and A000040(2+16) = 61.
16777217 = 2^24 + 1 is included because A000040(1+24) = 97, and 16777217 = 97*257*673.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^20 + 2; Array[Set[a[#], #] &, 2]; {1}~Join~Reap[Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], a[n] = k = Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]; If[Divisible[n, a[n]], Sow[n]]], {n, 3, nn}] ][[-1, 1]] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364547(n) = ((n%2)&&!(n%A005940(n)));

A365465 a(n) = A356867(n) / gcd(n, A356867(n)).

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 10, 1, 1, 7, 14, 5, 25, 10, 4, 25, 16, 1, 35, 7, 10, 125, 40, 1, 4, 16, 1, 11, 22, 7, 55, 11, 14, 35, 8, 5, 49, 49, 25, 35, 140, 10, 250, 20, 4, 245, 196, 25, 625, 4, 16, 125, 64, 1, 7, 55, 35, 275, 88, 7, 350, 56, 10, 343, 98, 125, 875, 70, 40, 125, 160, 1, 1225, 196, 4, 3125, 400, 16, 1000, 8, 1, 13, 26
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2023

Keywords

Comments

Denominator of n / A356867(n).

Crossrefs

Cf. A356867, A365462, A365463, A365464 (numerators).
Cf. also A364502.

Programs

  • PARI
    up_to = 19683;
    A356867list(up_to) = { my(v=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==vecsum(digits(i,3)), v[i] = i; h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; break))); mapput(met,v[i],i)); (v); };
    v356867 = A356867list(up_to);
    A356867(n) = v356867[n];
    A365465(n) = (A356867(n)/gcd(n, A356867(n)));

Formula

a(n) = A356867(n) / A365463(n).
Showing 1-7 of 7 results.