cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364970 a(n) = Sum_{k=1..n} binomial(floor(n/k)+2,3).

Original entry on oeis.org

1, 5, 12, 26, 42, 73, 102, 152, 204, 278, 345, 464, 556, 693, 835, 1021, 1175, 1422, 1613, 1907, 2173, 2496, 2773, 3228, 3569, 4015, 4445, 4998, 5434, 6120, 6617, 7331, 7965, 8717, 9391, 10392, 11096, 12031, 12909, 14059, 14921, 16219, 17166, 18489, 19711, 21072, 22201
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Partial sums of A007437.

Programs

  • Mathematica
    Table[Sum[Binomial[Floor[n/k+2],3],{k,n}],{n,50}] (* Harvey P. Dale, Aug 04 2024 *)
  • PARI
    a(n) = sum(k=1, n, binomial(n\k+2, 3));
    
  • Python
    from math import isqrt
    def A364970(n): return (-(s:=isqrt(n))**2*(s+1)*(s+2)+sum((q:=n//k)*(3*k*(k+1)+(q+1)*(q+2)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+1,2) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^3 = 1/(1-x) * Sum_{k>=1} binomial(k+1,2) * x^k/(1-x^k).
a(n) = (A064602(n)+A024916(n))/2. - Chai Wah Wu, Oct 26 2023