cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A161631 E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)).

Original entry on oeis.org

1, 1, 2, 9, 52, 425, 4206, 50827, 713000, 11500785, 208833850, 4226139731, 94226705772, 2296472176297, 60727113115046, 1732020500240955, 52998549321251536, 1731977581804704737, 60205422811336194546
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1-LambertW[-x^2*E^x]/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
  • PARI
    {a(n,m=1)=n!*sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*k^(n-k)/(n-k)!)}

Formula

E.g.f.: A(x) = 1 - LambertW(-x^2*exp(x))/x.
E.g.f.: A(x) = 1 + Sum_{n>=1} x^(2*n-1) * n^(n-1) * exp(n*x) / n!.
E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) = 1 + x*exp(x)/B(x) = (1+sqrt(1+4*x*exp(x)))/2.
a(n) = n*A125500(n-1) for n>0, where exp(x*A(x)) = e.g.f. of A125500.
a(n) = n!*Sum_{k=0..n} C(n-k+1,k)/(n-k+1) * k^(n-k)/(n-k)!.
If A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then
a(n,m) = n!*Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * k^(n-k)/(n-k)!.
a(n) ~ sqrt(1+LambertW(1/(2*exp(1/2)))) * n^(n-1) / (exp(n) * 2^(n+1/2) * (LambertW(1/(2*exp(1/2))))^(n+1)). - Vaclav Kotesovec, Jul 09 2013

A364978 E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)^2).

Original entry on oeis.org

1, 1, 2, 15, 124, 1565, 23886, 446887, 9787352, 246408633, 7010910010, 222438284651, 7788393551412, 298293192119221, 12406118302851014, 556817903190669135, 26825727269937929776, 1380790608848655193457, 75625529930102546486514
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n-2*k+1, k)/((2*n-2*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*n-2*k+1,k)/( (2*n-2*k+1)*(n-k)! ).

A377581 E.g.f. satisfies A(x) = 1 + x * exp(x*A(x)^4).

Original entry on oeis.org

1, 1, 2, 27, 340, 6485, 156486, 4532647, 155359016, 6116223465, 272369488330, 13537882005131, 742838308204092, 44605728508797469, 2909444391161677838, 204844046364505460655, 15484082153045052133456, 1250714994867101307618257, 107511883999692161772696210
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n-4*k+1, k)/((4*n-4*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-4*k+1,k)/( (4*n-4*k+1)*(n-k)! ).

A377578 E.g.f. satisfies A(x) = (1 + x * exp(x*A(x)))^3.

Original entry on oeis.org

1, 3, 12, 105, 1308, 21375, 441018, 10896123, 315264792, 10449447579, 390569672910, 16257117737223, 745842771924660, 37396841181068343, 2034701509480503906, 119398947940954110915, 7517149983020119420848, 505442237612562154098099, 36150074712773275030075926
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3*n-3*k+3, k)/((n-k+1)*(n-k)!));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A364979.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(3*n-3*k+3,k)/( (n-k+1)*(n-k)! ).
Showing 1-4 of 4 results.