cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A161631 E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)).

Original entry on oeis.org

1, 1, 2, 9, 52, 425, 4206, 50827, 713000, 11500785, 208833850, 4226139731, 94226705772, 2296472176297, 60727113115046, 1732020500240955, 52998549321251536, 1731977581804704737, 60205422811336194546
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1-LambertW[-x^2*E^x]/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
  • PARI
    {a(n,m=1)=n!*sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*k^(n-k)/(n-k)!)}

Formula

E.g.f.: A(x) = 1 - LambertW(-x^2*exp(x))/x.
E.g.f.: A(x) = 1 + Sum_{n>=1} x^(2*n-1) * n^(n-1) * exp(n*x) / n!.
E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) = 1 + x*exp(x)/B(x) = (1+sqrt(1+4*x*exp(x)))/2.
a(n) = n*A125500(n-1) for n>0, where exp(x*A(x)) = e.g.f. of A125500.
a(n) = n!*Sum_{k=0..n} C(n-k+1,k)/(n-k+1) * k^(n-k)/(n-k)!.
If A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then
a(n,m) = n!*Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * k^(n-k)/(n-k)!.
a(n) ~ sqrt(1+LambertW(1/(2*exp(1/2)))) * n^(n-1) / (exp(n) * 2^(n+1/2) * (LambertW(1/(2*exp(1/2))))^(n+1)). - Vaclav Kotesovec, Jul 09 2013

A364979 E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)^3).

Original entry on oeis.org

1, 1, 2, 21, 220, 3545, 70566, 1702267, 48438104, 1582227873, 58475787850, 2410935939731, 109728296017572, 5464423604085745, 295562179335075758, 17255009243888243115, 1081438061864539992496, 72422934220506772042817, 5161269584065131270532242
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3*n-3*k+1, k)/((3*n-3*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(3*n-3*k+1,k)/( (3*n-3*k+1)*(n-k)! ).

A371042 E.g.f. satisfies A(x) = 1 + x^2*exp(x*A(x)).

Original entry on oeis.org

1, 0, 2, 6, 12, 140, 1470, 10122, 114296, 1874952, 25462170, 379431470, 7546461252, 151797222876, 3066316693622, 72101615826450, 1843378516587120, 47860832586054032, 1338908395558366386, 40675047500003794902, 1282380661224172506620
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1 - LambertW[-E^x*x^3]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 10 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)*binomial(n-2*k+1, k)/((n-2*k+1)*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(n-2*k+1,k)/( (n-2*k+1)*(n-2*k)! ).
From Vaclav Kotesovec, Mar 10 2024: (Start)
E.g.f.: 1 - LambertW(-exp(x)*x^3)/x.
a(n) ~ sqrt(1 + LambertW(exp(-1/3)/3)) * n^(n-1) / (exp(n) * 3^(n + 1/2) * LambertW(exp(-1/3)/3)^(n+1)). (End)

A161632 E.g.f. satisfies A(x) = (1 + x*exp(x*A(x)))^2.

Original entry on oeis.org

1, 2, 6, 42, 392, 4970, 78492, 1489838, 33105648, 842437170, 24181696820, 772887702422, 27228973364232, 1048392980781770, 43802436902618604, 1973819502540516990, 95426799849067842272, 4927195390491532227170
Offset: 0

Views

Author

Paul D. Hanna, Jun 18 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 42*x^3/3! + 392*x^4/4! + 4970*x^5/5! +...
A(x)^(1/2) = 1 + x + 2*x^2/2! + 15*x^3/3! + 124*x^4/4! + 1565*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[n!*Sum[Binomial[2*(n-k+1),k]/(n-k+1) * k^(n-k)/(n-k)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n,m=1)=n!*sum(k=0,n,m*binomial(2*(n-k+m),k)/(n-k+m)*k^(n-k)/(n-k)!)}

Formula

a(n) = n!*Sum_{k=0..n} C(2*(n-k+1),k)/(n-k+1) * k^(n-k)/(n-k)!.
If A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then
a(n,m) = n!*Sum_{k=0..n} m*C(2*(n-k+m),k)/(n-k+m) * k^(n-k)/(n-k)!.
E.g.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where B(x) = (1 + x*exp(x)/B(x))^2.
a(n) ~ sqrt(2*s^(3/2)*(2-5*sqrt(s)+3*s)/(2*sqrt(s)-1)) * (2*s-2*sqrt(s))^n * n^(n-1) / exp(n), where s = 3.533778497303240223520495... is the root of the equation (2-2/sqrt(s)) * log(2*(sqrt(s)-2*s+s^(3/2))) = 1. - Vaclav Kotesovec, Jan 10 2014
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364978. - Seiichi Manyama, Nov 02 2024

A377581 E.g.f. satisfies A(x) = 1 + x * exp(x*A(x)^4).

Original entry on oeis.org

1, 1, 2, 27, 340, 6485, 156486, 4532647, 155359016, 6116223465, 272369488330, 13537882005131, 742838308204092, 44605728508797469, 2909444391161677838, 204844046364505460655, 15484082153045052133456, 1250714994867101307618257, 107511883999692161772696210
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n-4*k+1, k)/((4*n-4*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-4*k+1,k)/( (4*n-4*k+1)*(n-k)! ).
Showing 1-5 of 5 results.