cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365098 Primes p such that Sum_{k=1..p-1} q^2_p(k) == 0 (mod p), with q_p(k) a Fermat quotient.

Original entry on oeis.org

2, 11, 971
Offset: 1

Views

Author

Felix Fröhlich, Aug 21 2023

Keywords

Comments

The congruence in the definition is given in Gy, 2018, Eq. 16.
The terms, except for the prime 2, satisfy the congruence B_{p-1} - 1 + 1/p == (B_{2p-2} - 1 + 1/p)/2 (mod p^2), with B_i a Bernoulli number (cf. Gy, 2018, Eq. 18).
Any odd prime that is a term of both A007540 and A197632, i.e., that is simultaneously a Wilson prime and a Lerch prime, is in this sequence (cf. Gy, 2018, Theorem 5).
An equivalent definition, better suited for computational purposes, is: "Primes p such that Sum_{k=1..p-1} (k^(p-1) - 1)^2 == 0 (mod p^3)." - John Blythe Dobson, Apr 30 2024
a(4) > 427000, if it exists (Gy, 2018). - Amiram Eldar, Aug 22 2023
a(4) > 39540000, if it exists. - John Blythe Dobson, Apr 30 2024

Crossrefs

Programs

  • Mathematica
    Join[{2}, Select[Prime[Range[2, 200]], Divisible[Numerator[BernoulliB[# - 1] - 1 + 1/# - (BernoulliB[2*# - 2] - 1 + 1/#)/2], #^2] &]] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    forprime(p = 2, 10000, if(sum(j=1, p-1, (Mod(j, p^3)^(p-1) - 1)^2) % p^3 == 0, print1(p, ", "))) /* John Blythe Dobson, Apr 30 2024 */