A365198 Smallest k such that there exists a complete k-arc on the projective plane over GF(q), where q = A246655(n) is the n-th prime power > 1.
4, 4, 6, 6, 6, 6, 6, 7, 8, 9, 10, 10, 10, 12, 12, 13, 14, 14
Offset: 1
References
- J. W. P. Hirschfeld, Projective geometries over finite fields, Second edition, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1998.
Links
- D. Bartoli, G. Faina, S. Marcugini and F. Pambianco, On the minimum size of complete arcs and minimal saturating sets in projective planes, J. Geom. 104 (2013), no. 3, 409-419.
- S. Marcugini, A. Milani, and F. Pambianco, Minimal complete arcs in PG(2,q), q <= 32, arXiv:1005.3412 [math.CO], 2010.
- B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl. (4) 48 (1959), 1-96.
Crossrefs
Cf. A365216.
Formula
a(n) > sqrt(2*A246655(n)) + 1 [Segre].
Comments