cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365332 The sum of divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 7, 31, 1, 13, 7, 1, 1, 1, 31, 1, 1, 1, 91, 1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 13, 1, 7, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 31, 7, 1, 1, 1, 31, 121
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

All the terms are odd.
The number of these divisors is A365331(n).
The sum of divisors of the square root of the largest square dividing n is A069290(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - 1)/(f[i,1] - 1));}

Formula

a(n) = A000203(A008833(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(e + 1 - (e mod 2)) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(2*s-2) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 5*zeta(3/2)/Pi^2 = 1.323444812234... .

A375360 The maximum exponent in the prime factorization of the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 13 2024

Keywords

Comments

Differs from A365331 at n = 1, 36, 72, 100, ... .

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[(If[OddQ[#], #, # + 1]) & /@ e]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n == 1, 0, vecmax(apply(x -> if(x % 2, x, x+1), factor(n)[,2])));

Formula

a(n) = A051903(A356191(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum{k>=1} (1 - 1/zeta(2*k)) = 1.98112786070359477197... .

A380162 a(n) is the value of the Euler totient function when applied to the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 2, 20, 1, 6, 2, 1, 1, 1, 8, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, (p-1)*p^(2*Floor[e/2]-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1) * f[i, 1]^(2*(f[i, 2]\2)-1)));}

Formula

a(n) = A000010(A008833(n)).
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(2*floor(e/2)-1) if e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) / (zeta(2*s-1) * zeta(2*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3/2)/(zeta(2)*zeta(3)) = 1.32118019580177760682... .
Showing 1-3 of 3 results.