cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365331 The number of divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

All the terms are odd.
The sum of these divisors is A365332(n).
The number of divisors of the square root of the largest square dividing n is A046951(n).

Crossrefs

Programs

  • Maple
    a:= n-> mul(2*iquo(i[2], 2)+1, i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 01 2023
  • Mathematica
    f[p_, e_] := e + 1 - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x + 1 - x%2, factor(n)[, 2]));
    
  • PARI
    a(n) = numdiv(n/core(n)); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000005(A008833(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = e + 1 - (e mod 2).
Dirichlet g.f.: zeta(s)*zeta(2*s)^2/zeta(4*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2.
More precise asymptotics: Sum_{k=1..n} a(k) ~ 5*n/2 + 3*zeta(1/2)*sqrt(n)/Pi^2 * (log(n) + 4*gamma - 2 - 24*zeta'(2)/Pi^2 + zeta'(1/2)/zeta(1/2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 02 2023

A380162 a(n) is the value of the Euler totient function when applied to the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 2, 20, 1, 6, 2, 1, 1, 1, 8, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, (p-1)*p^(2*Floor[e/2]-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1) * f[i, 1]^(2*(f[i, 2]\2)-1)));}

Formula

a(n) = A000010(A008833(n)).
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(2*floor(e/2)-1) if e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) / (zeta(2*s-1) * zeta(2*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3/2)/(zeta(2)*zeta(3)) = 1.32118019580177760682... .
Showing 1-2 of 2 results.