cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A365494 a(n) is the smallest number which can be represented as the sum of n distinct n-almost primes in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

2, 19, 65, 190, 440, 1160, 2896, 7072, 16832, 40064, 90752, 208640, 476160, 1082880, 2398208, 5310464, 11694080, 25616384, 56475648, 122388480, 266010624, 575012864, 1245446144, 2699034624, 5779750912, 12296650752, 26377977856, 55855546368, 118656860160, 255458279424, 531669975040
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 07 2023

Keywords

Examples

			For n = 2: 19 = 2*2 + 3*5 = 3*3 + 2*5.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, S, t,x,y,k, i, p, v, R;
         initialize(pq);
         insert([-2^n, 2$n],pq);
         S[0]:= 1:
         for i from 1 to n do S[i]:= 0 od:
         do
           t:= extract(pq);
           x:= -t[1];
           for i from n to 1 by -1 do
             S[i]:= expand(S[i] + S[i-1] * y^x);
           od;
           if type(S[n],`+`) then
             R:= select(t -> degree(t,y) < x and eval(t,y=1) = n, convert(S[n],list));
             if R <> [] then return min(map(t -> degree(t,y),R)) fi;
           fi;
           p:= nextprime(t[-1]);
           for i from n+1 to 2 by -1 while t[i] = t[-1] do
            v:= x*(p/t[-1])^(n+2-i);
            insert([-v, op(t[2..i-1]), p$(n+2-i)], pq)
           od;
         od;
    end proc:
    map(f, [$1..19]); # Robert Israel, Jun 10 2025

Extensions

a(5)-a(19) from Robert Israel, Jun 10 2025
More terms from David A. Corneth, Jun 10 2025
Showing 1-1 of 1 results.