cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365617 Iterated Pochhammer symbol.

Original entry on oeis.org

1, 1, 2, 24, 421200, 13257209623458438290962108800
Offset: 0

Views

Author

DarĂ­o Clavijo, Sep 12 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          (z-> mul(z+j, j=0..n-1))(a(n-1)))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Sep 12 2023
  • Mathematica
    FoldList[Pochhammer, 1, Range[5]] (* Amiram Eldar, Sep 12 2023 *)
  • PARI
    P(x, y) = my(P=1); for (i=0, y-1, P *= x+i); P;
    a(n) = my(x=1); n--; for (i=1, n, x = P(x, i+1)); x; \\ Michel Marcus, Sep 13 2023
  • Python
    from gmpy2 import *
    from functools import reduce
    gamma = lambda n: fac(n - 1)
    Pochhammer = lambda z,n: gamma(n + z) // gamma(z)
    list_Pochhammer = lambda lst: int(reduce((lambda x, y: Pochhammer(x, y)), lst)) if len(lst) > 0 else 1
    print([list_Pochhammer(range(1, n + 1)) for n in range(0, 6)])
    
  • Python
    from functools import reduce
    from sympy import rf
    def A365617(n): return reduce(rf,range(1,n+1),1) # Chai Wah Wu, Sep 15 2023
    

Formula

a(n) = Pochhammer(...(Pochhammer(Pochhammer(1, 2), 3), ...), n).
a(n) = gamma(n + a(n-1)) / gamma(a(n-1)).
a(n) = Product_{j=0..n-1} (j + a(n-1)), a(0) = 1. - Alois P. Heinz, Sep 12 2023