A365968 Irregular triangle read by rows: T(n,k) (0 <= n, 0 <= k < 2^n). An infinite binary tree with root node 0 in row n = 0. Each node then has left child (2*j) - k - 1 and right child (2*j) - k + 1, where j and k are the values of the parent and grandparent nodes respectively.
0, -1, 1, -3, -1, 1, 3, -6, -4, -2, 0, 0, 2, 4, 6, -10, -8, -6, -4, -4, -2, 0, 2, -2, 0, 2, 4, 4, 6, 8, 10, -15, -13, -11, -9, -9, -7, -5, -3, -7, -5, -3, -1, -1, 1, 3, 5, -5, -3, -1, 1, 1, 3, 5, 7, 3, 5, 7, 9, 9, 11, 13, 15, -21, -19, -17, -15, -15, -13, -11, -9
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n=0: 0; n=1: -1, 1; n=2: -3, -1, 1, 3; n=3: -6, -4, -2, 0, 0, 2, 4, 6; n=4: -10, -8, -6, -4, -4, -2, 0, 2, -2, 0, 2, 4, 4, 6, 8, 10; ... The binary tree starts with root 0 in row n = 0. For rows n < 2, k = 0. In row n = 3, the parent node -3 has left child -6 = 2*(-3) - (-1) - 1. The tree begins: row [n] [0] ______0______ / \ [1] __-1__ __1__ / \ / \ [2] -3 -1 1 3 / \ / \ / \ / \ [3] -6 -4 -2 0 0 2 4 6 .
Links
- John Tyler Rascoe, Rows n = 0..12, flattened
Programs
-
PARI
T(n,k) = sum(i=0,n-1, if(bittest(k,i), i+1, -(i+1))); \\ Kevin Ryde, Nov 14 2023
-
Python
def A365968(n, k): b, x = bin(k)[2:].zfill(n), 0 for i in range(0, n): x += (-1)**(int(b[n-(i+1)])+1)*(i+1) return(x) # John Tyler Rascoe, Nov 12 2023
Formula
T(n,k) = - Sum_{i=0..n-1} (i+1)*(-1)^b[i] where the binary expansion of k is k = Sum_{i=0..n-1} b[i]*2^i. - Kevin Ryde, Nov 14 2023
Comments