A367076 Irregular triangle read by rows: T(n,k) (0 <= n, 0 <= k < 2^n). T(n,k) = -Sum_{i=0..k} A365968(n,i).
0, 1, 0, 3, 4, 3, 0, 6, 10, 12, 12, 12, 10, 6, 0, 10, 18, 24, 28, 32, 34, 34, 32, 34, 34, 32, 28, 24, 18, 10, 0, 15, 28, 39, 48, 57, 64, 69, 72, 79, 84, 87, 88, 89, 88, 85, 80, 85, 88, 89, 88, 87, 84, 79, 72, 69, 64, 57, 48, 39, 28, 15, 0, 21, 40, 57, 72, 87
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n=0: 0; n=1: 1, 0; n=2: 3, 4, 3, 0; n=3: 6, 10, 12, 12, 12, 10, 6, 0; n=4; 10, 18, 24, 28, 32, 34, 34, 32, 34, 34, 32, 28, 24, 18, 10, 0;
Links
- John Tyler Rascoe, Rows n = 0..12, flattened
- Wikipedia, Blancmange curve.
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Mathematica
nmax=10; row[n_]:=Join[CoefficientList[Series[1/(1-x)*Sum[ i/(1+x^2^(i-1))*Product[1+x^2^j,{j,0,i-2}],{i,n}],{x,0,2^n-1}],x],{0}]; Array[row,6,0] (* Stefano Spezia, Dec 23 2023 *)
-
Python
def row_gen(n): x = 0 for k in range(2**n): b = bin(k)[2:].zfill(n) x += sum((-1)**(int(b[n-i])+1)*i for i in range(1,n+1)) yield(-x) def A367076_row_n(n): return(list(row_gen(n)))
Formula
T(n,k) = Sum_{i=0..n} abs(k + 1 - (2^i) * round((k+1)/2^i)) * i.
G.f. for n-th row: 1/(1-x) * Sum_{i=1..n} (i/(1+x^2^(i-1)) * Product_{j=0..i-2} 1 + x^2^j).
Comments