cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366107 a(n) = Sum_{i=0..floor(q(n)/3)} binomial(n-3*(i+1), q(n)-3*i) with q(n) = ceiling((n-3)/2).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 21, 39, 75, 141, 273, 519, 1009, 1933, 3770, 7263, 14202, 27479, 53846, 104543, 205216, 399543, 785460, 1532779, 3017106, 5899167, 11624580, 22766607, 44905518, 88073091, 173863965, 341425551, 674506059, 1326019653, 2621371005, 5158412943, 10203609597
Offset: 3

Views

Author

Stefano Spezia, Sep 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_]:=Ceiling[(n-3)/2]; a[n_]:=Sum[Binomial[n-3(i+1),q[n]-3i], {i,0,Floor[q[n]/3]}]; Array[a,37,3]
  • PARI
    a(n) = my(q=ceil((n-3)/2)); sum(i=0, q\3, binomial(n-3*(i+1), q-3*i)); \\ Michel Marcus, Sep 30 2023

Formula

From Remark 3.4 at p. 5 in Czédli: (Start)
A366108(n)/a(n) ~ 7/4.
A366109(n)/a(n) ~ 7/6. (End)
a(n) ~ c*2^(n+1)/sqrt(n), with c = 1/(7*sqrt(2*Pi)) = (2/7)* A218708.

A366109 a(n) = floor(n!*(3*floor(n/2)!*ceiling(n/2)! + 3*floor((n+2)/2)!*ceiling((n-2)/2)! - 6*floor(n/2)!*ceiling((n-2)/2)!)^(-1)).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 26, 46, 92, 168, 333, 616, 1225, 2288, 4558, 8580, 17107, 32413, 64664, 123170, 245832, 470288, 938943, 1802770, 3600207, 6933733, 13849778, 26744400, 53429368, 103411680, 206621384, 400720260, 800747232, 1555737480, 3109074130, 6050090200, 12091800773
Offset: 3

Views

Author

Stefano Spezia, Sep 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Floor[n!(3Floor[n/2]!Ceiling[n/2]! + 3Floor[(n+2)/2]!Ceiling[(n-2)/2]! - 6Floor[n/2]!Ceiling[(n-2)/2]!)^(-1)]; Array[a,37,3]

Formula

a(n)/A366107(n) ~ 7/6 (see Remark 3.4 at p. 5 in Czédli).
a(n) ~ c*2^n/sqrt(n), with c = 1/(3*sqrt(2*Pi)) = (2/3)*A218708.
Showing 1-2 of 2 results.