cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366157 The number of lit cells in weakly decreasing partitions of n when light shines from the north west. Here partitions are represented from left to right by columns of cells.

Original entry on oeis.org

1, 4, 8, 17, 27, 49, 74, 118, 174, 263, 371, 540, 747, 1048, 1429, 1954, 2610, 3513, 4631, 6123, 7978, 10398, 13397, 17277, 22054, 28131, 35605, 45004, 56502, 70879, 88370, 110033, 136325, 168612, 207637, 255308, 312689, 382373, 466004, 566979, 687685, 832793, 1005654
Offset: 1

Views

Author

Arnold Knopfmacher, Oct 02 2023

Keywords

References

  • A. Blecher, A. Knopfmacher, and M. E. Mays, Casting light on integer partitions, preprint.

Crossrefs

Programs

  • Mathematica
    T[r_, s_] := If[s > r, 0, If[s == 0, 1, If[r == 1 && s == 1, q, If[r == 2 && s == 1, q*(1 + q), q^s*Sum[T[r - 1, i], {i, 0, s}]]]]]; nmax = 15; Do[Print[SeriesCoefficient[Sum[PartitionsP[n]*q^n - Sum[T[r, s], {s, 0, r}], {r, 0, n}], {q, 0, n}]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 04 2023 *)
  • PARI
    a(n) = {my(res = 0); forpart(p = n, res+=qlit(p)); res}
    qlit(v) = {my(res = v[#v], h = v[#v]-1); forstep(i = #v-1, 1, -1, res+=max(0, v[i]-h); h = max(h, v[i])-1); res} \\ David A. Corneth, Oct 04 2023

Formula

G.f.: Sum_{k>=0} (P(q)-T_q(k))
where P(q) is the partition g.f. Product_{i>=1} 1/(1-q^i)
and T_q(k)=Sum_{s=0..k} t[k,s] with t[r,s]=q^s*Sum_{i=0..s} t[r-1,i]
and initial conditions t[1,1]=q; t[2,1]=q(1+q); t[r,0]=1; t[r,s]=0 for s>r.
a(n) <= n * A000041(n). - David A. Corneth, Oct 04 2023

Extensions

a(13)-a(15) from Vaclav Kotesovec, Oct 04 2023
More terms from David A. Corneth, Oct 04 2023