cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366167 Semiprimes that are the sum of two successive terms of A092192.

Original entry on oeis.org

25, 146, 201, 221, 249, 302, 365, 529, 662, 681, 849, 949, 1211, 1282, 1318, 1343, 1849, 2517, 3223, 3398, 3466, 3635, 3867, 3949, 4063, 4749, 4819, 4997, 5158, 6049, 6614, 7023, 7041, 7066, 7117, 7921, 8314, 8471, 8709, 8727, 8914, 8981, 9155, 9235, 9299, 9563, 10741, 10895, 10958, 11435, 11962
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Oct 02 2023

Keywords

Examples

			a(3) = 201 is a term because 201 = 95 + 106 = A092192(7) + A092192(8).
		

Crossrefs

Programs

  • Maple
    SP:= select(t -> numtheory:-bigomega(t) = 2, [$1..10000]):
    A092192:= select(t -> numtheory:-bigomega(t) = 2, SP[2..-1]+SP[1..-2]):
    select(t -> numtheory:-bigomega(t) = 2, A092192[2..-1]+A092192[1..-2]);
  • Mathematica
    sim = Select[Range[4, 100000], 2 == PrimeOmega[#];&]; se = Select[Drop[sim, 1]
    + Drop[sim, -1], 2 == PrimeOmega[#] &];    Select[Drop[se, 1] + Drop[se, -1], 2
    == PrimeOmega[#] &]
  • PARI
    upto(n) = {my(pr = 10, res = List(), semiprimes = List([4,6])); forfactored(i = 9, n, if(bigomega(i[2]) == 2, listpop(semiprimes, 1); listput(semiprimes, i[1]); s = semiprimes[1] + semiprimes[2]; if(bigomega(s) == 2, c = s + pr; if(c > n, return(res)); if(bigomega(c) == 2, listput(res, c)); pr = s))); res} \\ David A. Corneth, Oct 02 2023