cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366169 Positive integers k such that the second derivative of the k-th Bernoulli polynomial B(k,x) contains only integer coefficients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, 25, 28, 29, 30, 31, 36, 37, 55, 57, 60, 61, 70, 121, 190
Offset: 1

Views

Author

Bernd C. Kellner, Oct 02 2023

Keywords

Comments

The sequence is finite and is a supersequence of A094960. The terms are those numbers k where the denominator A366168(k) = 1. It remains to show that 190 is the last term. This is very likely, since the terms depend on the estimation of a product of primes satisfying certain p-adic conditions that is connected with A324370. A proven asymptotic formula related to that product implies that this sequence is finite. See Kellner 2017, 2023, and BLMS 2018.

Examples

			B(5,x) = x^5 - (5x^4)/2 + (5 x^3)/3 - x/6 and B''(5,x) = 20x^3 - 30x^2 + 10x, so 5 is a term.
		

Crossrefs

Programs

  • Maple
    aList := len -> select(n -> denom(diff(diff(bernoulli(n, x), x), x)) = 1, [seq(1..len)]): aList(200);  # Peter Luschny, Oct 03 2023
  • Mathematica
    (* k-th derivative of BP *)
    k = 2; Select[Range[1000], Denominator[Together[D[BernoulliB[#, x],{x, k}]]] == 1&]
    (* exact denominator formula *)
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]];
    DBP[n_, k_] := Module[{m = n-k+1, fac = FactorialPower[n, k]}, If[n < 1 || k < 1 || n <= k, Return[1]]; Times@@Select[Prime[Range[PrimePi[(m+1)/(2 + Mod[m+1, 2])]]], !Divisible[fac, #] && SD[m, #] >= #&]];
    k = 2; Select[Range[1000], DBP[#, k] == 1&]
  • PARI
    isok(k) = #select(x->denominator(x)>1, Vec(deriv(deriv(bernpol(k))))) == 0; \\ Michel Marcus, Oct 03 2023
    
  • Python
    from itertools import count, islice
    from sympy import Poly, diff, bernoulli
    from sympy.abc import x
    def A366169_gen(): # generator of terms
        return filter(lambda k:k<=2 or all(c.is_integer for c in Poly(diff(bernoulli(k,x),x,2)).coeffs()),count(1))
    A366169_list = list(islice(A366169_gen(),20)) # Chai Wah Wu, Oct 03 2023

Formula

k is a term if A366168(k) = 1.