A366332 Minimum number of diagonal transversals in a semicyclic diagonal Latin square of order 2n+1.
1, 0, 5, 27, 0, 4523, 127339, 0, 204330233, 11232045257, 0
Offset: 0
Examples
Example of horizontally semicyclic diagonal Latin square of order 13: 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
Links
- Eduard I. Vatutin, About the spectra of numerical characteristics of different types of cyclic diagonal Latin squsres (in Russian).
- Eduard I. Vatutin, About the spectra of numerical characteristics of semicyclic diagonal Latin squares of order 17 (in Russian).
- Eduard I. Vatutin, About the spectra of numerical characteristics of semicyclic diagonal Latin squares of order 19 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
Comments