A366266
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^3.
Original entry on oeis.org
1, 2, 6, 30, 170, 1050, 6846, 46374, 323154, 2301618, 16680246, 122607342, 911868282, 6849381194, 51885977838, 395941193718, 3040818657954, 23485437201762, 182297207394150, 1421357996034750, 11126867651367498, 87421958424703098, 689130671539597854
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*k+1, n-k)*binomial(3*k, k)/(2*k+1));
A366363
G.f. satisfies A(x) = (1 + x/A(x))/(1 - x).
Original entry on oeis.org
1, 2, 0, 4, -8, 32, -112, 432, -1696, 6848, -28160, 117632, -497664, 2128128, -9183488, 39940864, -174897664, 770452480, -3411959808, 15181264896, -67833868288, 304256253952, -1369404661760, 6182858317824, -27995941060608, 127100310290432, -578433619525632
Offset: 0
-
A366363[n_]:=(-1)^(n-1)Sum[Binomial[2k-1,k]Binomial[k-1,n-k]/(2k-1),{k,0,n}];
Array[A366363,30,0] (* Paolo Xausa, Oct 20 2023 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(k-1, n-k)/(2*k-1));
A366434
G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^2.
Original entry on oeis.org
1, 1, -4, 16, -84, 496, -3140, 20832, -142932, 1005856, -7220100, 52657392, -389088084, 2906551440, -21914464708, 166548194240, -1274531623764, 9812792232768, -75955668337412, 590742300208848, -4614140648464980, 36178872976542768, -284664427193774916
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*k, n-k)/(3*k-1));
A366365
G.f. satisfies A(x) = (1 + x/A(x)^3)/(1 - x).
Original entry on oeis.org
1, 2, -4, 32, -240, 2064, -18816, 179264, -1762816, 17758976, -182342400, 1901196288, -20075427840, 214246524928, -2307200135168, 25039992254464, -273603550461952, 3007387399258112, -33230774508716032, 368915340555517952, -4112806343370539008
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(3*k-1, n-k)/(4*k-1));
A366366
G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).
Original entry on oeis.org
1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338, -15088643098754942, 215396586102923138, -3091050571516120582, 44566089825496186170
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(4*k-1, n-k)/(5*k-1));
A366357
G.f. satisfies A(x) = 1/(1 - x) + x/A(x)^2.
Original entry on oeis.org
1, 2, -3, 19, -105, 690, -4781, 34708, -260189, 1999169, -15660175, 124596499, -1004110947, 8179379808, -67239070867, 557098881920, -4647368670949, 39001655222788, -329048378867467, 2789241880512899, -23743798316713367, 202894843070927860
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(3*k-1, n-k)/(3*k-1));
A348957
G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).
Original entry on oeis.org
1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)
A363818
G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x)^2.
Original entry on oeis.org
1, 3, -1, 24, -125, 924, -6895, 54181, -438737, 3639655, -30769033, 264122781, -2296010693, 20171456222, -178818115155, 1597550237324, -14369097515939, 130010781029079, -1182520161325459, 10806114831458755, -99163805247182631, 913441732959868748
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*(2*k-1), n-k)/(3*k-1));
A363819
G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x)^3.
Original entry on oeis.org
1, 4, 1, 38, -193, 1697, -14298, 127836, -1175835, 11078851, -106354266, 1036575329, -10230191020, 102031153812, -1026763493315, 10412602349343, -106308046392516, 1091783632303656, -11271378486953873, 116907289944782853, -1217649336037820058
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(3*(2*k-1), n-k)/(3*k-1));
A371893
G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 + A(x)^4).
Original entry on oeis.org
1, 2, 0, 16, -32, 336, -1472, 10944, -63744, 441088, -2866688, 19772416, -134832128, 941381632, -6585720832, 46607831040, -331406262272, 2373110628352, -17072541007872, 123438375763968, -896088779128832, 6530356893777920, -47752086733717504
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n-4*k-2, n-1))/n);
Showing 1-10 of 11 results.