cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A366266 G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^3.

Original entry on oeis.org

1, 2, 6, 30, 170, 1050, 6846, 46374, 323154, 2301618, 16680246, 122607342, 911868282, 6849381194, 51885977838, 395941193718, 3040818657954, 23485437201762, 182297207394150, 1421357996034750, 11126867651367498, 87421958424703098, 689130671539597854
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*k+1,n-k) * binomial(3*k,k)/(2*k+1).
a(n) = A366221(n) + A366221(n-1).
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366364.

A366363 G.f. satisfies A(x) = (1 + x/A(x))/(1 - x).

Original entry on oeis.org

1, 2, 0, 4, -8, 32, -112, 432, -1696, 6848, -28160, 117632, -497664, 2128128, -9183488, 39940864, -174897664, 770452480, -3411959808, 15181264896, -67833868288, 304256253952, -1369404661760, 6182858317824, -27995941060608, 127100310290432, -578433619525632
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A366363[n_]:=(-1)^(n-1)Sum[Binomial[2k-1,k]Binomial[k-1,n-k]/(2k-1),{k,0,n}];
    Array[A366363,30,0] (* Paolo Xausa, Oct 20 2023 *)
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(k-1, n-k)/(2*k-1));

Formula

G.f.: A(x) = -2*x / (1-sqrt(1+4*x*(1-x))).
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(2*k-1,k) * binomial(k-1,n-k)/(2*k-1).

A366434 G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^2.

Original entry on oeis.org

1, 1, -4, 16, -84, 496, -3140, 20832, -142932, 1005856, -7220100, 52657392, -389088084, 2906551440, -21914464708, 166548194240, -1274531623764, 9812792232768, -75955668337412, 590742300208848, -4614140648464980, 36178872976542768, -284664427193774916
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Partial sums give A366364.

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*k, n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(2*k,n-k) / (3*k-1).

A366365 G.f. satisfies A(x) = (1 + x/A(x)^3)/(1 - x).

Original entry on oeis.org

1, 2, -4, 32, -240, 2064, -18816, 179264, -1762816, 17758976, -182342400, 1901196288, -20075427840, 214246524928, -2307200135168, 25039992254464, -273603550461952, 3007387399258112, -33230774508716032, 368915340555517952, -4112806343370539008
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(3*k-1, n-k)/(4*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(4*k-1,k) * binomial(3*k-1,n-k)/(4*k-1).

A366366 G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).

Original entry on oeis.org

1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338, -15088643098754942, 215396586102923138, -3091050571516120582, 44566089825496186170
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(4*k-1, n-k)/(5*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k-1,k) * binomial(4*k-1,n-k)/(5*k-1).

A366357 G.f. satisfies A(x) = 1/(1 - x) + x/A(x)^2.

Original entry on oeis.org

1, 2, -3, 19, -105, 690, -4781, 34708, -260189, 1999169, -15660175, 124596499, -1004110947, 8179379808, -67239070867, 557098881920, -4647368670949, 39001655222788, -329048378867467, 2789241880512899, -23743798316713367, 202894843070927860
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(3*k-1, n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(3*k-1,n-k)/(3*k-1).

A348957 G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).

Original entry on oeis.org

1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
    CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)

Formula

a(0) = 1; a(n) = -(-1)^n * a(n-1) + Sum_{k=0..n-1} a(k) * a(n-k-1).
a(n) ~ c * 3^(3*n/4) * (1 + sqrt(3))^n / (sqrt(2*Pi) * n^(3/2) * 2^(n/2)), where c = 3^(1/4) if n is even and c = (1 + sqrt(3))/sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 14 2021
From Alexander Burstein, Nov 26 2021: (Start)
G.f.: A(-x) = 1/A(x).
G.f.: A(x) = 1 + x*(1+A(x)^3)/A(x). (End)
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-3*k-2,n-1) for n > 0. - Seiichi Manyama, Apr 11 2024

A363818 G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x)^2.

Original entry on oeis.org

1, 3, -1, 24, -125, 924, -6895, 54181, -438737, 3639655, -30769033, 264122781, -2296010693, 20171456222, -178818115155, 1597550237324, -14369097515939, 130010781029079, -1182520161325459, 10806114831458755, -99163805247182631, 913441732959868748
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*(2*k-1), n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(2*(2*k-1),n-k)/(3*k-1).

A363819 G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x)^3.

Original entry on oeis.org

1, 4, 1, 38, -193, 1697, -14298, 127836, -1175835, 11078851, -106354266, 1036575329, -10230191020, 102031153812, -1026763493315, 10412602349343, -106308046392516, 1091783632303656, -11271378486953873, 116907289944782853, -1217649336037820058
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(3*(2*k-1), n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(3*(2*k-1),n-k)/(3*k-1).

A371893 G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 + A(x)^4).

Original entry on oeis.org

1, 2, 0, 16, -32, 336, -1472, 10944, -63744, 441088, -2866688, 19772416, -134832128, 941381632, -6585720832, 46607831040, -331406262272, 2373110628352, -17072541007872, 123438375763968, -896088779128832, 6530356893777920, -47752086733717504
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n-4*k-2, n-1))/n);

Formula

a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(3*n-4*k-2,n-1) for n > 0.
Showing 1-10 of 11 results. Next