A366452
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(5/2).
Original entry on oeis.org
1, 2, 5, 20, 90, 440, 2266, 12110, 66525, 373320, 2130865, 12332512, 72202860, 426861830, 2544727475, 15280236800, 92333523153, 561054410200, 3426075429740, 21013974400920, 129403499560500, 799733464576880, 4958649842375975, 30837325310579350
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366453,
A366454,
A366455,
A366456.
-
a(n) = sum(k=0, n, binomial(3*k/2+1, n-k)*binomial(5*k/2, k)/(3*k/2+1));
A366453
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(7/2).
Original entry on oeis.org
1, 2, 7, 42, 287, 2142, 16898, 138600, 1170037, 10098774, 88712736, 790540296, 7128879940, 64933227996, 596523624144, 5520761026854, 51424824505054, 481741853731110, 4535711525840271, 42897532229559714, 407358615638833341, 3882484733036731500
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366452,
A366454,
A366455,
A366456.
-
a(n) = sum(k=0, n, binomial(5*k/2+1, n-k)*binomial(7*k/2, k)/(5*k/2+1));
A366455
G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(5/2).
Original entry on oeis.org
1, 2, -5, 30, -215, 1710, -14516, 128830, -1180920, 11093830, -106245975, 1033454774, -10181848705, 101394979530, -1018972470275, 10320779179380, -105250097458410, 1079767027094630, -11136159773691830, 115395278542757580, -1200814926210284360
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366452,
A366453,
A366454,
A366456.
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(7*k/2-1, k)*binomial(n+5*k/2-2, n-k)/(7*k/2-1));
A366456
G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(7/2).
Original entry on oeis.org
1, 2, -7, 56, -532, 5600, -62860, 737324, -8929726, 110811344, -1401640814, 18004922936, -234243536436, 3080152906096, -40870739065996, 546563064528906, -7358930622768977, 99672580921800656, -1357142384455626909, 18565841939010374736, -255054402946387767408
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366452,
A366453,
A366454,
A366455.
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(9*k/2-1, k)*binomial(n+7*k/2-2, n-k)/(9*k/2-1));
Showing 1-4 of 4 results.