A367057
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x).
Original entry on oeis.org
1, 1, 3, 13, 59, 294, 1549, 8477, 47715, 274468, 1606284, 9533595, 57247969, 347169053, 2123148153, 13079296531, 81087402683, 505543820304, 3167578950478, 19935616736595, 125971005957924, 798883392476824, 5083047458454395, 32439034490697090
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-5*k+1, k)*binomial(3*n-8*k, n-3*k)/(2*n-5*k+1));
A367058
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^2.
Original entry on oeis.org
1, 1, 3, 13, 60, 301, 1595, 8774, 49631, 286870, 1686876, 10059301, 60689041, 369762262, 2271892435, 14060917955, 87579290486, 548558815484, 3453077437532, 21833406999880, 138603490377008, 883075187803622, 5644796991703781, 36191055027026410
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-4*k+1, k)*binomial(3*n-7*k, n-3*k)/(2*n-4*k+1));
A367059
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^3.
Original entry on oeis.org
1, 1, 3, 13, 61, 309, 1651, 9153, 52161, 303681, 1798459, 10800237, 65614237, 402544597, 2490398139, 15519350593, 97326638145, 613786324353, 3890080513395, 24764386415821, 158281551244029, 1015314894877237, 6534249237530115, 42178452056044929
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(3*n-6*k, n-3*k)/(2*n-3*k+1));
A367060
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^4.
Original entry on oeis.org
1, 1, 3, 13, 62, 318, 1718, 9627, 55437, 326070, 1950630, 11831706, 72597453, 449804148, 2810260317, 17685019893, 111997074910, 713223954540, 4564502770117, 29341499243806, 189364923816282, 1226535071582818, 7970416067268898, 51949175133236526
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-2*k+1, k)*binomial(3*n-5*k, n-3*k)/(2*n-2*k+1));
A367061
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^5.
Original entry on oeis.org
1, 1, 3, 13, 63, 328, 1797, 10210, 59607, 355409, 2155166, 13250055, 82402013, 517453773, 3276534510, 20897024350, 134118458191, 865574280977, 5613879001983, 36571135386965, 239187418784442, 1569994174618799, 10338925554033967, 68288387553861826
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-k+1, k)*binomial(3*n-4*k, n-3*k)/(2*n-k+1));
A367062
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^6.
Original entry on oeis.org
1, 1, 3, 13, 64, 339, 1889, 10917, 64836, 393292, 2426335, 15176847, 96029114, 613540477, 3952727925, 25649572693, 167494312692, 1099850119488, 7257905610260, 48106858236044, 320131295055690, 2138010763838375, 14325505944147495, 96273042489762471
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n+1, k)*binomial(3*n-3*k, n-3*k))/(2*n+1);
A367040
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.
Original entry on oeis.org
1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));
A367042
G.f. satisfies A(x) = 1 + x^3 + x*A(x)^2.
Original entry on oeis.org
1, 1, 2, 6, 16, 48, 152, 500, 1688, 5816, 20368, 72288, 259424, 939808, 3432192, 12622416, 46706144, 173762016, 649569216, 2438748864, 9191656192, 34765298944, 131912452864, 501987944832, 1915417307392, 7326620001536, 28088736525824, 107913607531520
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-3*k+1, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
A367043
G.f. satisfies A(x) = 1 + x^3 + x*A(x)^4.
Original entry on oeis.org
1, 1, 4, 23, 144, 997, 7304, 55646, 436320, 3497846, 28538852, 236203518, 1978290648, 16735471979, 142789868112, 1227339581084, 10617748941840, 92377468226466, 807769888050640, 7095187345173620, 62574408414192220, 553881698543850337
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(3*(n-3*k)+1, k)*binomial(4*(n-3*k), n-3*k)/(3*(n-3*k)+1));
A366677
G.f. satisfies A(x) = 1 + x^4 + x*A(x)^4.
Original entry on oeis.org
1, 1, 4, 22, 141, 973, 7112, 54040, 422552, 3377770, 27478568, 226753828, 1893462584, 15969598554, 135842638632, 1164075017512, 10039732285528, 87081507756245, 759128176746864, 6647475055207618, 58445784269830824, 515745587816906733
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(3*(n-4*k)+1, k)*binomial(4*(n-4*k), n-4*k)/(3*(n-4*k)+1));
Showing 1-10 of 11 results.