A366942 Expansion of e.g.f. 1/(1-x-2*x^2-3*x^3).
1, 1, 6, 48, 408, 5040, 72000, 1184400, 22619520, 482993280, 11459750400, 299495750400, 8531976499200, 263353163673600, 8754879893760000, 311808414677760000, 11845876873678848000, 478163414336864256000, 20436460099541950464000, 921972301728418676736000
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*binomial(n, j)*j!*j, j=1..min(3, n))) end: seq(a(n), n=0..19); # Alois P. Heinz, Dec 14 2023
-
Mathematica
With[{m = 20}, Range[0, m]! * CoefficientList[Series[1/(1 - x - 2*x^2 - 3*x^3), {x, 0, m}], x]] (* Amiram Eldar, Oct 30 2023 *)
-
PARI
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x-2*x^2-3*x^3))) \\ Michel Marcus, Oct 30 2023
Formula
a(n) = n*(a(n-1)+(n-1)*(2*a(n-2)+(n-2)*3*a(n-3))) for n>=3. - Alois P. Heinz, Dec 14 2023
Comments