A366977 Array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} binomial(floor(n/j)+k,k+1).
1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 10, 1, 7, 17, 26, 21, 14, 1, 8, 23, 42, 42, 33, 16, 1, 9, 30, 64, 78, 73, 41, 20, 1, 10, 38, 93, 135, 149, 102, 56, 23, 1, 11, 47, 130, 220, 282, 234, 152, 69, 27, 1, 12, 57, 176, 341, 500, 493, 379, 204, 87, 29
Offset: 1
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, ... 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, ... 10, 21, 42, 78, 135, 220, 341, 507, 728, 1015, ... 14, 33, 73, 149, 282, 500, 839, 1344, 2070, 3083, ... 16, 41, 102, 234, 493, 963, 1764, 3061, 5074, 8089, ...
Crossrefs
Programs
-
Python
from math import isqrt, comb def A366977_T(n,k): return (-(s:=isqrt(n))**2*comb(s+k,k)+sum((q:=n//j)*((k+1)*comb(j+k-1,k)+comb(q+k,k)) for j in range(1,s+1)))//(k+1) def A366977_gen(): # generator of terms return (A366977_T(k+1, n-k-1) for n in count(1) for k in range(n)) A366977_list = list(islice(A366977_gen(),30))
Formula
T(n,k) = Sum_{j=1..n} binomial(j+k-1,k)*floor(n/j) = (Sum_{j=1..floor(sqrt(n))} [floor(n/j)*((k+1)*binomial(j+k-1,k)+binomial(floor(n/j)+k,k))] - floor(sqrt(n))^2*binomial(floor(sqrt(n))+k,k))/(k+1).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - x^j)^(k+1). - Seiichi Manyama, Oct 30 2023