cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366977 Array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} binomial(floor(n/j)+k,k+1).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 10, 1, 7, 17, 26, 21, 14, 1, 8, 23, 42, 42, 33, 16, 1, 9, 30, 64, 78, 73, 41, 20, 1, 10, 38, 93, 135, 149, 102, 56, 23, 1, 11, 47, 130, 220, 282, 234, 152, 69, 27, 1, 12, 57, 176, 341, 500, 493, 379, 204, 87, 29
Offset: 1

Views

Author

Chai Wah Wu, Oct 30 2023

Keywords

Examples

			Array begins:
   1,  1,   1,   1,   1,   1,    1,    1,    1,    1, ...
   3,  4,   5,   6,   7,   8,    9,   10,   11,   12, ...
   5,  8,  12,  17,  23,  30,   38,   47,   57,   68, ...
   8, 15,  26,  42,  64,  93,  130,  176,  232,  299, ...
  10, 21,  42,  78, 135, 220,  341,  507,  728, 1015, ...
  14, 33,  73, 149, 282, 500,  839, 1344, 2070, 3083, ...
  16, 41, 102, 234, 493, 963, 1764, 3061, 5074, 8089, ...
		

Crossrefs

First superdiagonal is A366978.
Columns k=0..4 give A006218, A024916, A364970, A365409, A365439.

Programs

  • Python
    from math import isqrt, comb
    def A366977_T(n,k): return (-(s:=isqrt(n))**2*comb(s+k,k)+sum((q:=n//j)*((k+1)*comb(j+k-1,k)+comb(q+k,k)) for j in range(1,s+1)))//(k+1)
    def A366977_gen(): # generator of terms
        return (A366977_T(k+1, n-k-1) for n in count(1) for k in range(n))
    A366977_list = list(islice(A366977_gen(),30))

Formula

T(n,k) = Sum_{j=1..n} binomial(j+k-1,k)*floor(n/j) = (Sum_{j=1..floor(sqrt(n))} [floor(n/j)*((k+1)*binomial(j+k-1,k)+binomial(floor(n/j)+k,k))] - floor(sqrt(n))^2*binomial(floor(sqrt(n))+k,k))/(k+1).
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j/(1 - x^j)^(k+1). - Seiichi Manyama, Oct 30 2023