A367099 Least positive integer such that the number of divisors having two distinct prime factors is n.
1, 6, 12, 24, 36, 60, 72, 120, 144, 216, 288, 360, 432, 960, 720, 864, 1296, 1440, 1728, 2160, 2592, 3456, 7560, 4320, 5184, 7776, 10800, 8640, 10368, 12960, 15552, 17280, 20736, 40320, 25920, 31104, 41472, 60480, 64800, 51840, 62208, 77760, 93312
Offset: 0
Keywords
Examples
The divisors of 60 having two distinct prime factors are: 6, 10, 12, 15, 20. Since 60 is the first number having five such divisors, we have a(5) = 60. The terms together with their prime indices begin: 1: {} 6: {1,2} 12: {1,1,2} 24: {1,1,1,2} 36: {1,1,2,2} 60: {1,1,2,3} 72: {1,1,1,2,2} 120: {1,1,1,2,3} 144: {1,1,1,1,2,2} 216: {1,1,1,2,2,2} 288: {1,1,1,1,1,2,2} 360: {1,1,1,2,2,3} 432: {1,1,1,1,2,2,2} 960: {1,1,1,1,1,1,2,3} 720: {1,1,1,1,2,2,3} 864: {1,1,1,1,1,2,2,2}
Links
- Amiram Eldar, Table of n, a(n) for n = 0..4469
Crossrefs
A001221 counts distinct prime factors.
Programs
-
Mathematica
nn=1000; w=Table[Length[Select[Divisors[n],PrimeNu[#]==2&]],{n,nn}]; spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
-
PARI
a(n) = my(k=1); while (sumdiv(k, d, omega(d)==2) != n, k++); k; \\ Michel Marcus, Nov 11 2023
Comments