cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367109 Triangle of number of interval-closed sets T(m,n) in the product of two chains [m]x[n], for m <= n, read by rows.

Original entry on oeis.org

2, 4, 13, 7, 33, 114, 11, 71, 321, 1146, 16, 136, 781, 3449, 12578, 22, 239, 1702, 9115, 39614, 146581, 29, 393, 3403, 21743, 111063, 477097, 1784114, 37, 613, 6349, 47737, 283243, 1398211, 5953639, 22443232, 46, 916, 11191, 97861, 667684, 3754186, 18060127, 76372470, 289721772, 56, 1321, 18811, 189377, 1472692, 9358669
Offset: 1

Views

Author

Nadia Lafreniere, Jan 26 2024

Keywords

Comments

An interval-closed set of a poset is a subset I such that if x and y are in I with x <= z <= y, then z is in I.
Interval-closed sets are also called convex subsets of a poset.

Examples

			The initial rows of the triangle are:
  [1] 2
  [2] 4,  13
  [3] 7,  33,  114
  [4] 11, 71,  321,   1146
  [5] 16, 136, 781,   3449,  12578
  [6] 22, 239, 1702,  9115,  39614,  146581
  [7] 29, 393, 3403,  21743, 111063, 477097,  1784114
  [8] 37, 613, 6349,  47737, 283243, 1398211, 5953639,  22443232
  [9] 46, 916, 11191, 97861, 667684, 3754186, 18060127, 76372470, 289721772
The T(1,1) = 2 through T(3,1) = 7 interval-closed sets:
  {}       {}              {}                             {}
  {[1,1]}  {[1,1]}         {[1,1]}                        {[1,1]}
           {[2,1]}         {[1,2]}                        {[2,1]}
           {[1,1], [2,1]}  {[2,1]}                        {[3,1]}
                           {[2,2]}                        {[1,1], [2,1]}
                           {[1,1], [1,2]}                 {[2,1], [3,1]}
                           {[1,1], [2,1]}                 {[1,1], [2,1], [3,1]}
                           {[1,2], [2,1]}
                           {[1,2], [2,2]}
                           {[2,1], [2,2]}
                           {[1,1], [1,2], [2,1]}
                           {[1,2], [2,1], [2,2]}
                           {[1,1,], [1,2], [2,1], [2,2]}
		

Crossrefs

Cf. A369313.

Programs

  • SageMath
    ICS_count = 0
    x = Posets.ProductOfChains([m, n])
    for A in x.antichains_iterator():
        I = x.order_ideal(A)
        Q = x.subposet(set(I).difference(A))
        ICS_count += Q.antichains().cardinality()
    ICS_count

Extensions

Corrected by Nadia Lafreniere, Dec 10 2024