A367233
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^3.
Original entry on oeis.org
1, 1, 6, 39, 284, 2223, 18267, 155445, 1358073, 12111306, 109802183, 1009001571, 9376972698, 87978198364, 832223905371, 7928413841673, 76002832317437, 732578811761670, 7095717550127526, 69029297500888522, 674181392461483212, 6607910786529613248
Offset: 0
-
a(n, s=3, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A367235
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^4.
Original entry on oeis.org
1, 1, 7, 50, 399, 3422, 30798, 286974, 2744947, 26798010, 265945022, 2674970684, 27209385886, 279412999031, 2892787737002, 30161921520976, 316440334960563, 3338105334701396, 35385133077851602, 376732207920371784, 4026682585718602014
Offset: 0
-
a(n, s=4, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A367259
G.f. satisfies A(x) = 1 + x*A(x)^3 * (1 + x*A(x))^2.
Original entry on oeis.org
1, 1, 5, 27, 169, 1138, 8061, 59188, 446455, 3438863, 26935372, 213883631, 1717852129, 13931065117, 113913095218, 938154381748, 7774936633411, 64791892224825, 542598513709481, 4564001359135661, 38541714429405304, 326640923339410701
Offset: 0
-
A367259 := proc(n)
add(binomial(3*k+(n-k)+1,k) * binomial(2*k,n-k) / (3*k+(n-k)+1),k=0..n) ;
end proc:
seq(A367259(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a(n, s=2, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
A367280
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x)^3)^2.
Original entry on oeis.org
1, 1, 5, 33, 251, 2073, 18069, 163600, 1523731, 14504988, 140499307, 1380322749, 13721269995, 137758098052, 1394840743638, 14227181658075, 146048314214619, 1507739540085350, 15643456882376418, 163036276218805231, 1706021256401103673
Offset: 0
-
a(n, s=2, t=3, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
Showing 1-4 of 4 results.