A367253 The number of ways of making change for 5n cents with Canadian coins (5, 10, 25, 100, 200).
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 30, 32, 36, 38, 42, 46, 50, 54, 58, 62, 68, 72, 78, 82, 88, 94, 100, 106, 112, 118, 128, 134, 144, 150, 160, 170, 180, 190, 200, 210, 224, 234, 248, 258, 272, 286, 300, 314, 328, 342, 362
Offset: 0
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1).
- Index entries for sequences related to making change.
Programs
-
Mathematica
a[n_]:=Length[FrobeniusSolve[{5,10,25,100,200},5*n]]; a/@Range[0,100] (* Ivan N. Ianakiev, Nov 21 2023 *) CoefficientList[Series[1/((1-x)*(1-x^2)*(1-x^5)*(1-x^20)*(1-x^40)),{x,0,1000}],x] (* Ray Chandler, Nov 22 2023 *)
Formula
From Alois P. Heinz, Nov 11 2023: (Start)
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^20)*(1-x^40)).
a(20*n) = A307849(n). (End)
Comments