A367379 a(n) = Sum_{j=1..n} Sum_{i=1..n} (j mod i).
0, 1, 5, 12, 26, 44, 73, 109, 157, 215, 292, 375, 481, 603, 744, 900, 1087, 1287, 1522, 1773, 2053, 2361, 2712, 3073, 3476, 3913, 4389, 4891, 5448, 6021, 6653, 7316, 8028, 8786, 9599, 10427, 11326, 12277, 13287, 14325, 15442, 16587, 17815, 19089, 20418, 21811
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # for a(1)..a(N) S:= [seq(NumberTheory:-SumOfDivisors(i,1),i=1..N+1)]: SS:= ListTools:-PartialSums(S): S2:= [seq(i*S[i],i=1..N+1)]: SS2:= ListTools:-PartialSums(S2): f:= n -> 1/2*n^2*(n+1) - (n+1)*SS[n+1]+SS2[n+1]: map(f, [$1..N]); # Robert Israel, Dec 20 2023
-
Mathematica
a[n_]:=n^2(n+1)/2-Sum[DivisorSigma[1,i](n-i+1),{i,n+1}]; Array[a,47,0] (* Stefano Spezia, Nov 17 2023 *)
-
PARI
a(n) = sum(j=1, n, sum(i=1, n, j % i)); \\ Michel Marcus, Nov 16 2023
-
Python
from sympy import divisor_sigma A002411 = lambda n: ((n*n)*(n+1))>>1 A175254 = lambda n: sum(divisor_sigma(i) * (n-i+1) for i in range(1,n+1)) a = lambda n: A002411(n) - A175254(n) print([a(n) for n in range(1, 53)])
-
Python
from math import isqrt def A367379(n): return (n**2*(n+1)>>1)-(((s:=isqrt(n))**2*(s+1)*((s+1)*(2*s+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+2*q+1)+3*(n+1)*(2*k+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Dec 20 2023
Comments