cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367740 a(n) = A367727(A367593(n)).

Original entry on oeis.org

-1, 0, 0, 0, 5, 0, 9, 5, 0, 5, 0, 5, 0, 5, 3, 0, 5, 0, 8, 5, 0, 8, 5, 0, 8, 5, 3, 0, 8, 5, 0, 8, 5, 3, 0, 8, 5, 0, 8, 5, 3, 0, 8, 5
Offset: 1

Views

Author

Stefano Spezia, Nov 29 2023

Keywords

Comments

Restricted to integers k where k + 1 divides R(k) - 1 the terms are (R(k) - 1) / (k + 1), where R(k) denotes the digit reversal of k. - Peter Luschny, Dec 01 2023
The 0's correspond to the powers of 10 (cf. A011557), the 5's correspond to the numbers of the form 14*10^h + 7 = 7*A199682(h) for h > 0, and the 8's correspond to the numbers of the form 12345*10^m + 6789 = A367650(m) for m > 3. The only negative term -1 corresponds to A367593(1) = 0. - Stefano Spezia, Dec 01 2023

Crossrefs

Programs

  • Python
    def A367740List(upto):
        L = []
        for n in range(upto):
            rev = int(str(n)[::-1])
            if (rev - 1) % (n + 1) == 0:
                L.append((rev - 1) // (n + 1))
        return L
    print(A367740List(10**6))  # Peter Luschny, Dec 01 2023
    
  • Python
    from itertools import product, count, islice
    def A367740_gen(): # generator of terms
        yield from (-1,0,0)
        for l in count(1):
            m = 10**(l+1)
            for d in product('0123456789',repeat=l):
                for a, b, c in ((1, 0, 0), (1, 1, 0), (1, 4, 2), (1, 5, 5), (1, 7, 5)):
                    k = a*m+int(s:=''.join(d))*10+b
                    r = b*m+int(s[::-1])*10+a
                    if c*(k+1)==r-1:
                        yield c
                a,b = 1,9
                k = a*m+int(s:=''.join(d))*10+b
                r = b*m+int(s[::-1])*10+a
                p,q = divmod(r-1,k+1)
                if not q:
                    yield p
            a,b,c=2,6,3
            for d in product('0123456789',repeat=l):
                k = a*m+int(s:=''.join(d))*10+b
                r = b*m+int(s[::-1])*10+a
                if c*(k+1)==r-1:
                    yield c
    A367740_list = list(islice(A367740_gen(),20)) # Chai Wah Wu, Dec 01 2023

Formula

-1 <= a(n) <= 9.

Extensions

a(30)-a(44) from Chai Wah Wu, Dec 02 2023

A367727 a(n) is the numerator of (R(n) - 1)/(n + 1), where R(n) is the digit reversal of n.

Original entry on oeis.org

-1, 0, 1, 1, 3, 2, 5, 3, 7, 4, 0, 5, 20, 15, 8, 25, 60, 35, 80, 9, 1, 1, 21, 31, 41, 51, 61, 71, 81, 91, 2, 3, 2, 16, 6, 13, 62, 36, 82, 23, 3, 13, 23, 3, 43, 53, 63, 73, 83, 93, 4, 7, 24, 17, 4, 27, 64, 37, 84, 47, 5, 15, 25, 35, 9, 5, 65, 75, 85, 19, 6, 2, 26
Offset: 0

Views

Author

Stefano Spezia, Nov 28 2023

Keywords

Crossrefs

Cf. A004086, A367593, A367728 (denominator).

Programs

  • Mathematica
    a[n_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-1)/(n+1)]; Array[a,73,0]
  • PARI
    a(n) = numerator((fromdigits(Vecrev(digits(n)))-1)/(n+1)); \\ Michel Marcus, Nov 28 2023

A367728 a(n) is the denominator of (R(n) - 1)/(n + 1), where R(n) is the digit reversal of n.

Original entry on oeis.org

1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 1, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 8, 3, 17, 5, 9, 37, 19, 39, 10, 41, 42, 43, 4, 45, 46, 47, 48, 49, 50, 51, 26, 53, 27, 5, 28, 57, 29, 59, 30, 61, 62, 63, 64, 13, 6, 67, 68, 69, 14, 71, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 28 2023

Keywords

Crossrefs

Cf. A004086, A367593, A367727 (numerator).

Programs

  • Mathematica
    a[n_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-1)/(n+1)]; Array[a,72,0]
  • PARI
    a(n) = denominator((fromdigits(Vecrev(digits(n)))-1)/(n+1)); \\ Michel Marcus, Nov 28 2023

A367650 a(n) = 12345*10^n + 6789.

Original entry on oeis.org

19134, 130239, 1241289, 12351789, 123456789, 1234506789, 12345006789, 123450006789, 1234500006789, 12345000006789, 123450000006789, 1234500000006789, 12345000000006789, 123450000000006789, 1234500000000006789, 12345000000000006789, 123450000000000006789, 1234500000000000006789
Offset: 0

Views

Author

Stefano Spezia, Nov 25 2023

Keywords

Comments

For n > 3, a(n) satisfies (R(a(n)) - 1)/(a(n) + 1) = 8, where R(x) = A004086(x) is decimal digit reversal.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{19134,130239},20]

Formula

a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
O.g.f.: 9*(2126 - 8915*x)/((1 - x)*(1 - 10*x)).
E.g.f.: 3*exp(x)*(2263 + 4115*exp(9*x)).
Showing 1-4 of 4 results.