cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367786 Expansion of e.g.f. exp(exp(4*x) - x - 1).

Original entry on oeis.org

1, 3, 25, 235, 2737, 36947, 563657, 9542715, 176920417, 3555369635, 76820077945, 1772943290763, 43469116126737, 1127040956393203, 30779951676185385, 882453651485815003, 26480355971228530369, 829522636694530362691, 27064267045022876869337, 917751849133986186857003
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[Exp[4 x] - x - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 4^k BellB[k], {k, 0, n}], {n, 0, 19}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(exp(4*x) - x - 1))) \\ Michel Marcus, Nov 30 2023

Formula

a(n) = exp(-1) * Sum_{k>=0} (4*k-1)^n / k!.
a(0) = 1; a(n) = -a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 4^k * Bell(k).

A367839 Expansion of e.g.f. 1/(2 + x - exp(3*x)).

Original entry on oeis.org

1, 2, 17, 183, 2679, 48903, 1071621, 27394965, 800378019, 26307021483, 960739737777, 38595129840369, 1691405818822719, 80301792637126791, 4105701241574252445, 224912022483008478141, 13142159127790633537947, 815924005186398537216483
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-i*v[i]+sum(j=1, i, 3^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = -n * a(n-1) + Sum_{k=1..n} 3^k * binomial(n,k) * a(n-k).

A367938 Expansion of e.g.f. exp(exp(3*x) - 1 - 2*x).

Original entry on oeis.org

1, 1, 10, 55, 487, 4654, 51463, 632125, 8536492, 125279785, 1981246555, 33530245984, 603797462677, 11513675558701, 231539488842610, 4893151984630579, 108334206855000739, 2505977899186557502, 60419653270442268643, 1515077412621445514089, 39437350309301393464876, 1063746973172416765272589
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[Exp[3 x] - 1 - 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = -2 a[n - 1] + Sum[Binomial[n - 1, k - 1] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
    Table[Sum[Binomial[n, k] (-2)^(n - k) 3^k BellB[k], {k, 0, n}], {n, 0, 21}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(exp(3*x) - 1 - 2*x))) \\ Michel Marcus, Dec 07 2023

Formula

G.f. A(x) satisfies: A(x) = 1 - x * ( 2 * A(x) - 3 * A(x/(1 - 3*x)) / (1 - 3*x) ).
a(n) = exp(-1) * Sum_{k>=0} (3*k-2)^n / k!.
a(0) = 1; a(n) = -2 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 3^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * 3^k * Bell(k).
Showing 1-3 of 3 results.