cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367842 Decimal expansion of limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 0, 1, 9, 5, 3, 9, 7, 9, 9, 8, 9, 7, 3, 8, 1, 7, 4, 1, 8, 5, 3, 0, 0, 7, 8, 2, 7, 1, 8, 9, 4, 7, 4, 4, 3, 7, 2, 7, 7, 0, 9, 3, 9, 5, 6, 3, 0, 2, 4, 7, 5, 6, 6, 9, 9, 2, 0, 8, 2, 3, 4, 5, 7, 0, 6, 5, 4, 7, 1, 9, 5, 1, 8, 4, 1, 7, 2, 4, 6, 9, 9, 4, 8, 6, 3, 9, 0, 2, 6, 4, 1, 9, 3, 5, 0, 8, 6, 0, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 02 2023

Keywords

Comments

Limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(1/n) = sqrt(2*Pi).

Examples

			1.23456019539799897381741853007827189474437277093956302475669920823457...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Pi)^(1/4)/Glaisher, 10, 120][[1]]
    Exp[Integrate[x*Log[Gamma[x]], {x, 0, 1}]]

Formula

Equals (2*Pi)^(1/4) / A, where A = A074962 is the Glaisher-Kinkelin constant.
Equals A010767 * A092040 / A074962.
Equals exp(Integral_{x=0..1} x*log(Gamma(x)) dx).

A367899 Decimal expansion of limit_{n->oo} Product_{k=1..n} BarnesG(k/n)^(k/n^2).

Original entry on oeis.org

8, 2, 6, 7, 9, 8, 4, 6, 4, 3, 9, 4, 9, 7, 1, 3, 7, 1, 8, 3, 5, 3, 6, 4, 6, 4, 9, 4, 4, 6, 4, 3, 0, 0, 6, 3, 7, 8, 3, 3, 9, 9, 7, 8, 2, 3, 6, 7, 0, 2, 9, 1, 2, 0, 2, 4, 1, 0, 6, 0, 1, 8, 1, 8, 8, 0, 5, 8, 0, 9, 8, 7, 7, 2, 5, 7, 2, 6, 3, 3, 2, 3, 3, 7, 2, 6, 7, 7, 2, 7, 2, 5, 5, 6, 9, 2, 3, 8, 0, 7, 4, 1, 3, 1, 8, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 04 2023

Keywords

Examples

			0.82679846439497137183536464944643006378339978236702912024106018188...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(1/24 + 3*Zeta[3]/(8*Pi^2))/(Sqrt[Glaisher]*(2*Pi)^(1/12)), 10, 120][[1]]
    Exp[Integrate[x*Log[BarnesG[x]], {x, 0, 1}]]

Formula

Equals exp(1/24 + 3*zeta(3)/(8*Pi^2)) / (sqrt(A) * (2*Pi)^(1/12)), where A = A074962 is the Glaisher-Kinkelin constant.
Equals exp(Integral_{x=0..1} x*log(BarnesG(x)) dx).
Showing 1-2 of 2 results.