cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367958 a(n) = Product_{i=1..n, j=1..n} (i + 5*j).

Original entry on oeis.org

1, 6, 5544, 2822916096, 1723467782592331776, 2210440498434925488635904000000, 9234659938893939743399592700454853672960000000, 180150216814109052335771891722360520401032374209013927116800000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2023

Keywords

Comments

In general, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^(1/d) * (Product_{j=1..d} Gamma(j/d)^(j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*n*(n+1) + (d+1)^2/(12*d) + 1/12) * n^(n^2 - d/12 - 1/4 - 1/(12*d)) / ((2*Pi)^((d+1)/4) * exp(3*n^2/2 + 1/(12*d)) * d^((n*(d*n + (d+1)))/2 - 1/(12*d))), where A = A074962 is the Glaisher-Kinkelin constant.
Equivalently, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^d * (Product_{j=1..d} BarnesG(j/d)) * (2*Pi)^((d-3)/4) * (d+1)^((d + (d+1)^2*(6*n*(n+1) + 1)) / (12*d)) * n^(n^2 - 1/4 - 1/(12*d) - d/12) / (d^((n+1)*(d*n + 1)/2) * exp(3*n^2/2 + d/12)).

Crossrefs

Cf. A079478 (d=1), A324402 (d=2), A367956 (d=3), A367957 (d=4).

Programs

  • Maple
    a:= n-> mul(mul(i+5*j, i=1..n), j=1..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Dec 06 2023
  • Mathematica
    Table[Product[i + 5*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

Formula

a(n) ~ A^(1/5) * (1 + sqrt(5))^(1/10) * 2^(18*n*(n+1)/5 + 29/60) * 3^(18*n*(n+1)/5 + 41/60) * n^(n^2 - 41/60) / (Pi^(1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(n*(5*n+6)/2 + 1/3) * exp(3*n^2/2 + 1/60)), where A = A074962 is the Glaisher-Kinkelin constant.

A367898 Decimal expansion of limit_{n->oo} Product_{k=1..n} BarnesG(k/n)^(1/n).

Original entry on oeis.org

4, 1, 7, 4, 2, 7, 2, 9, 7, 6, 0, 1, 4, 0, 9, 8, 6, 3, 6, 4, 3, 9, 4, 8, 4, 5, 1, 6, 2, 2, 5, 1, 6, 9, 7, 7, 0, 9, 4, 5, 9, 6, 3, 3, 2, 2, 1, 4, 1, 1, 0, 0, 8, 2, 3, 2, 1, 1, 3, 1, 7, 6, 8, 2, 0, 0, 0, 9, 5, 8, 8, 8, 9, 2, 9, 8, 5, 6, 6, 3, 7, 9, 1, 9, 4, 6, 9, 5, 0, 3, 6, 9, 4, 0, 2, 4, 5, 7, 1, 4, 8, 2, 8, 0, 7, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 04 2023

Keywords

Examples

			0.4174272976014098636439484516225169770945963322141100823211317682...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[1/12] / (Glaisher^2 * (2*Pi)^(1/4)), 10, 120][[1]]

Formula

Equals exp(1/12) / (A^2 * (2*Pi)^(1/4)), where A = A074962 is the Glaisher-Kinkelin constant.
Product_{k=1..n} BarnesG(k/n) = A^(1/n - n) * exp((n - 1/n)/12) * n^(1/2 + 1/(12*n)) * (2*Pi)^((1-n)/2) * Product_{k=1..n-1} Gamma(k/n)^(k/n).

A367899 Decimal expansion of limit_{n->oo} Product_{k=1..n} BarnesG(k/n)^(k/n^2).

Original entry on oeis.org

8, 2, 6, 7, 9, 8, 4, 6, 4, 3, 9, 4, 9, 7, 1, 3, 7, 1, 8, 3, 5, 3, 6, 4, 6, 4, 9, 4, 4, 6, 4, 3, 0, 0, 6, 3, 7, 8, 3, 3, 9, 9, 7, 8, 2, 3, 6, 7, 0, 2, 9, 1, 2, 0, 2, 4, 1, 0, 6, 0, 1, 8, 1, 8, 8, 0, 5, 8, 0, 9, 8, 7, 7, 2, 5, 7, 2, 6, 3, 3, 2, 3, 3, 7, 2, 6, 7, 7, 2, 7, 2, 5, 5, 6, 9, 2, 3, 8, 0, 7, 4, 1, 3, 1, 8, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 04 2023

Keywords

Examples

			0.82679846439497137183536464944643006378339978236702912024106018188...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(1/24 + 3*Zeta[3]/(8*Pi^2))/(Sqrt[Glaisher]*(2*Pi)^(1/12)), 10, 120][[1]]
    Exp[Integrate[x*Log[BarnesG[x]], {x, 0, 1}]]

Formula

Equals exp(1/24 + 3*zeta(3)/(8*Pi^2)) / (sqrt(A) * (2*Pi)^(1/12)), where A = A074962 is the Glaisher-Kinkelin constant.
Equals exp(Integral_{x=0..1} x*log(BarnesG(x)) dx).

A375368 Decimal expansion of zeta'(2)/(2*Pi^2) + log(2*Pi)/6 - gamma/12.

Original entry on oeis.org

2, 1, 0, 7, 1, 4, 7, 8, 9, 5, 6, 8, 5, 5, 2, 1, 0, 8, 3, 4, 2, 9, 1, 1, 8, 7, 4, 6, 2, 6, 6, 9, 4, 8, 4, 3, 8, 3, 3, 3, 2, 9, 0, 2, 3, 1, 5, 0, 3, 5, 6, 5, 8, 9, 4, 0, 8, 7, 2, 0, 1, 3, 0, 5, 5, 0, 6, 8, 9, 8, 1, 4, 9, 6, 3, 7, 1, 9, 6, 9, 2, 7, 5, 4, 5, 1, 3, 2, 1
Offset: 0

Views

Author

R. J. Mathar, Aug 13 2024

Keywords

Comments

zeta'(2) = -0.9375.. is the first derivative of the zeta function (see A073002). Gamma is A001620.

Examples

			0.21071478956855210834291187462669484383332902315035...
		

Crossrefs

Programs

  • Maple
    Zeta(1,2)/2/Pi^2+log(2*Pi)/6-gamma/12 ; evalf(%) ;
  • Mathematica
    RealDigits[Zeta'[2] / (2*Pi^2) + Log[2*Pi] / 6 - EulerGamma / 12, 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)

Formula

Equals Integral_{x=0..1} x* log(Gamma(x)) dx.
Equals log(A367842). - Hugo Pfoertner, Aug 19 2024
Showing 1-4 of 4 results.