A368023 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+5) with i,j = 0, ..., n-1.
1, 42, 35442, 499114473, 111384708171022, 386735380538157813864, 20749829798295730016646982120, 17168067359133726591295713796489415774, 219043020447199737063468653002456184101044391781, 43136143328071407602633546712654262446417322619276001391870
Offset: 0
Keywords
Examples
a(4) = 111384708171022: 42, 132, 429, 1430; 132, 429, 1430, 4862; 429, 1430, 4862, 16796; 1430, 4862, 16796, 58786.
Links
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Mathematica
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+5],{i,0,n-1},{j,0,n-1}]],{n,10}]]
-
PARI
C(n) = binomial(2*n, n)/(n+1); \\ A000108 a(n) = matpermanent(matrix(n, n, i, j, C(i+j+3))); \\ Michel Marcus, Dec 11 2023
Formula
Det(M(n)) = A091962(n+1).