A278843
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).
Original entry on oeis.org
1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533
Offset: 0
From _Stefano Spezia_, Dec 08 2023: (Start)
a(4) = 97432285:
2, 5, 14, 42;
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430.
(End)
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023
A368026
Array read by ascending antidiagonals: A(n, k) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+k) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 95, 9, 2, 1, 38057, 979, 53, 5, 1, 207372681, 1417675, 19148, 406, 14, 1, 15977248385955, 28665184527, 97432285, 490614, 3612, 42, 1, 17828166968924572623, 8325587326635565, 7146659536022, 8755482505, 14798454, 35442, 132, 1, 292842668371666277607183121, 35389363346700690999467, 7683122105385590481, 2318987094804471, 930744290905, 499114473, 372801, 429, 1
Offset: 0
The array begins:
1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, ...
3, 9, 53, 406, 3612, ...
95, 979, 19148, 490614, 14798454, ...
38057, 1417675, 97432285, 8755482505, 930744290905, ...
...
-
with(LinearAlgebra):
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= (n, k)-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> C(i+j+k-2)))):
seq(seq(A(d-k, k), k=0..d), d=0..8); # Alois P. Heinz, Dec 20 2023
-
A[n_,k_]:=If[n==0,1,Permanent[Table[CatalanNumber[i+j+k],{i,0,n-1},{j,0,n-1}]]]; Table[A[n-k,k],{n,0,8},{k,0,n}]//Flatten
A368012
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 1, 3, 95, 38057, 207372681, 15977248385955, 17828166968924572623, 292842668371666277607183121, 71645110588632775032727941092738473, 263399284865064400938403105805219201386749363, 14653009564320804036813733761485114583670416021283903839, 12403293423772370760211339634714413308535752478944832963336911564521
Offset: 0
a(4) = 38057:
1, 1, 2, 5;
1, 2, 5, 14;
2, 5, 14, 42;
5, 14, 42, 132.
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Join[{1},Table[Permanent[Table[CatalanNumber[i+j],{i,0,n-1},{j,0,n-1}]],{n,12}]]
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j-2))); \\ Michel Marcus, Dec 11 2023
A368019
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+1) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 1, 9, 979, 1417675, 28665184527, 8325587326635565, 35389363346700690999467, 2230867495754739989535874468003, 2106171270085074740753132799048111935155, 30007898337707083458776293190436074888346472515407, 6491219550166075876771081259839537013093735814742318424677245
Offset: 0
a(4) = 1417675:
1, 2, 5, 14;
2, 5, 14, 42;
5, 14, 42, 132;
14, 42, 132, 429.
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+1],{i,0,n-1},{j,0,n-1}]],{n,11}]]
-
C(n) = binomial(2*n,n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n,n,i,j,C(i+j-1))); \\ Michel Marcus, Dec 09 2023
A368021
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+3) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 5, 406, 490614, 8755482505, 2318987094804471, 9179129956137993425772, 546580120389987275414413168012, 492460174883711250780962744103403975159, 6747075036368337341936435881321217868978170152215, 1411689504898999110533224343869931312130954127737962059963934
Offset: 0
a(4) = 8755482505:
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430;
132, 429, 1430, 4862.
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+3],{i,0,n-1},{j,0,n-1}]],{n,10}]]
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j+1))); \\ Michel Marcus, Dec 11 2023
A368022
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+4) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 14, 3612, 14798454, 930744290905, 891107801867703108, 12977575456694246217097712, 2880177942851157900010279504962852, 9767068920318918290905853040035029840419305, 507521146153330160633968276251306280235282377512091202, 405202219609475677155580649938116235991326716758748940659564085180
Offset: 0
a(4) = 930744290905:
14, 42, 132, 429;
42, 132, 429, 1430;
132, 429, 1430, 4862;
429, 1430, 4862, 16796.
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+4],{i,0,n-1},{j,0,n-1}]],{n,10}]]
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j+2))); \\ Michel Marcus, Dec 11 2023
A368024
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+6) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 132, 372801, 18271508684, 14570336513383508, 184204867131613485842464, 36494318768452684668237864399892, 112700882376631374264115400599310944646268, 5412697889621813132124427516447652973723355158580585, 4039897382110972290799421201399595435416108353911344509968785100
Offset: 0
a(4) = 14570336513383508:
132, 429, 1430, 4862;
429, 1430, 4862, 16796;
1430, 4862, 16796, 58786;
4862, 16796, 58786, 208012.
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+6],{i,0,n-1},{j,0,n-1}]],{n,9}]]
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j+4))); \\ Michel Marcus, Dec 11 2023
Showing 1-7 of 7 results.