cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A278843 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).

Original entry on oeis.org

1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 29 2016

Keywords

Examples

			From _Stefano Spezia_, Dec 08 2023: (Start)
a(4) = 97432285:
   2,   5,  14,   42;
   5,  14,  42,  132;
  14,  42, 132,  429;
  42, 132, 429, 1430.
(End)
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023

Formula

Det(M(n)) = n + 1 (see Mays and Wojciechowski, 2000). - Stefano Spezia, Dec 08 2023

A368026 Array read by ascending antidiagonals: A(n, k) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+k) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 95, 9, 2, 1, 38057, 979, 53, 5, 1, 207372681, 1417675, 19148, 406, 14, 1, 15977248385955, 28665184527, 97432285, 490614, 3612, 42, 1, 17828166968924572623, 8325587326635565, 7146659536022, 8755482505, 14798454, 35442, 132, 1, 292842668371666277607183121, 35389363346700690999467, 7683122105385590481, 2318987094804471, 930744290905, 499114473, 372801, 429, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Examples

			The array begins:
      1,       1,        1,          1,            1, ...
      1,       1,        2,          5,           14, ...
      3,       9,       53,        406,         3612, ...
     95,     979,    19148,     490614,     14798454, ...
  38057, 1417675, 97432285, 8755482505, 930744290905, ...
  ...
		

Crossrefs

Cf. A000012 (n=0), A000108 (n=1).
Cf. A368012 (k=0), A368019 (k=1), A278843 (k=2), A368021 (k=3), A368022 (k=4), A368023 (k=5), A368024 (k=6).
Cf. A368025 (determinant), A368298 (diagonal).

Programs

  • Maple
    with(LinearAlgebra):
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= (n, k)-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> C(i+j+k-2)))):
    seq(seq(A(d-k, k), k=0..d), d=0..8);  # Alois P. Heinz, Dec 20 2023
  • Mathematica
    A[n_,k_]:=If[n==0,1,Permanent[Table[CatalanNumber[i+j+k],{i,0,n-1},{j,0,n-1}]]]; Table[A[n-k,k],{n,0,8},{k,0,n}]//Flatten

A368012 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 1, 3, 95, 38057, 207372681, 15977248385955, 17828166968924572623, 292842668371666277607183121, 71645110588632775032727941092738473, 263399284865064400938403105805219201386749363, 14653009564320804036813733761485114583670416021283903839, 12403293423772370760211339634714413308535752478944832963336911564521
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Examples

			a(4) = 38057:
  1,  1,  2,   5;
  1,  2,  5,  14;
  2,  5, 14,  42;
  5, 14, 42, 132.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Permanent[Table[CatalanNumber[i+j],{i,0,n-1},{j,0,n-1}]],{n,12}]]
  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    a(n) = matpermanent(matrix(n, n, i, j, C(i+j-2))); \\ Michel Marcus, Dec 11 2023

Formula

Det(M(n)) = 1 (see Mays and Wojciechowski, 2000).

A368019 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+1) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 1, 9, 979, 1417675, 28665184527, 8325587326635565, 35389363346700690999467, 2230867495754739989535874468003, 2106171270085074740753132799048111935155, 30007898337707083458776293190436074888346472515407, 6491219550166075876771081259839537013093735814742318424677245
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Examples

			a(4) = 1417675:
   1,  2,   5,  14;
   2,  5,  14,  42;
   5, 14,  42, 132;
  14, 42, 132, 429.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Permanent[Table[CatalanNumber[i+j+1],{i,0,n-1},{j,0,n-1}]],{n,11}]]
  • PARI
    C(n) = binomial(2*n,n)/(n+1); \\ A000108
    a(n) = matpermanent(matrix(n,n,i,j,C(i+j-1))); \\ Michel Marcus, Dec 09 2023

Formula

Det(M(n)) = 1 (see Mays and Wojciechowski, 2000).

A368021 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+3) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 5, 406, 490614, 8755482505, 2318987094804471, 9179129956137993425772, 546580120389987275414413168012, 492460174883711250780962744103403975159, 6747075036368337341936435881321217868978170152215, 1411689504898999110533224343869931312130954127737962059963934
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Examples

			a(4) = 8755482505:
    5,  14,  42,   132;
   14,  42, 132,   429;
   42, 132, 429,  1430;
  132, 429, 1430, 4862.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Permanent[Table[CatalanNumber[i+j+3],{i,0,n-1},{j,0,n-1}]],{n,10}]]
  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    a(n) = matpermanent(matrix(n, n, i, j, C(i+j+1))); \\ Michel Marcus, Dec 11 2023

Formula

Det(M(n)) = A000330(n+1) (see Mays and Wojciechowski, 2000).

A368023 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+5) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 42, 35442, 499114473, 111384708171022, 386735380538157813864, 20749829798295730016646982120, 17168067359133726591295713796489415774, 219043020447199737063468653002456184101044391781, 43136143328071407602633546712654262446417322619276001391870
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Examples

			a(4) = 111384708171022:
    42,  132,   429,  1430;
   132,  429,  1430,  4862;
   429, 1430,  4862, 16796;
  1430, 4862, 16796, 58786.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Permanent[Table[CatalanNumber[i+j+5],{i,0,n-1},{j,0,n-1}]],{n,10}]]
  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    a(n) = matpermanent(matrix(n, n, i, j, C(i+j+3))); \\ Michel Marcus, Dec 11 2023

Formula

Det(M(n)) = A091962(n+1).

A368024 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+6) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 132, 372801, 18271508684, 14570336513383508, 184204867131613485842464, 36494318768452684668237864399892, 112700882376631374264115400599310944646268, 5412697889621813132124427516447652973723355158580585, 4039897382110972290799421201399595435416108353911344509968785100
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Examples

			a(4) = 14570336513383508:
   132,   429,  1430,   4862;
   429,  1430,  4862,  16796;
  1430,  4862, 16796,  58786;
  4862, 16796, 58786, 208012.
		

Crossrefs

Cf. A000108, A335857 (determinant).
Column k=6 of A368026.

Programs

  • Mathematica
    Join[{1},Table[Permanent[Table[CatalanNumber[i+j+6],{i,0,n-1},{j,0,n-1}]],{n,9}]]
  • PARI
    C(n) = binomial(2*n, n)/(n+1); \\ A000108
    a(n) = matpermanent(matrix(n, n, i, j, C(i+j+4))); \\ Michel Marcus, Dec 11 2023
Showing 1-7 of 7 results.