cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368299 a(n) is the number of permutations pi of [n] that avoid {231,321} so that pi^4 avoids 132.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 41, 72, 127, 223, 392, 688, 1208, 2120, 3721, 6530, 11460, 20111, 35293, 61935, 108689, 190736, 334719, 587391, 1030800, 1808928, 3174448, 5570768, 9776017, 17155714, 30106180, 52832663, 92714861, 162703239, 285524281, 501060184, 879299327
Offset: 0

Views

Author

Kassie Archer, Dec 20 2023

Keywords

Comments

Number of compositions of n of the form d_1+d_2+...+d_k=n where d_i is in {1,2,4} if i>1 and d_1 is any positive integer.

Crossrefs

Cf. A000071 (d_i in {1,2}), A077868 (d_i in {1,3}), A274110, A303666.
Partial sums of A181532.

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n<1, 0, 1+add(a(n-j), j=[1, 2, 4]))
        end:
    seq(a(n), n=0..37);  # Alois P. Heinz, Dec 20 2023
  • Mathematica
    LinearRecurrence[{2,0,-1,1,-1},{0,1,2,4,7},38] (* Stefano Spezia, Dec 21 2023 *)

Formula

G.f.: x/((1-x)*(1-x-x^2-x^4)).
a(n) = Sum_{m=0..n-1} Sum_{r=0..floor(m/4)} Sum_{j=0..floor((m-4*r)/2)} binomial(m-3*r-j,r)*binomial(m-4*r-j,j).
a(n) = 1+a(n-1)+a(n-2)+a(n-4) where a(0)=0, a(1)=1, a(2)=2, a(3)=4.
a(n) = A274110(n+1) - 1.