A368299 a(n) is the number of permutations pi of [n] that avoid {231,321} so that pi^4 avoids 132.
0, 1, 2, 4, 7, 13, 23, 41, 72, 127, 223, 392, 688, 1208, 2120, 3721, 6530, 11460, 20111, 35293, 61935, 108689, 190736, 334719, 587391, 1030800, 1808928, 3174448, 5570768, 9776017, 17155714, 30106180, 52832663, 92714861, 162703239, 285524281, 501060184, 879299327
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,1,-1).
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<1, 0, 1+add(a(n-j), j=[1, 2, 4])) end: seq(a(n), n=0..37); # Alois P. Heinz, Dec 20 2023
-
Mathematica
LinearRecurrence[{2,0,-1,1,-1},{0,1,2,4,7},38] (* Stefano Spezia, Dec 21 2023 *)
Formula
G.f.: x/((1-x)*(1-x-x^2-x^4)).
a(n) = Sum_{m=0..n-1} Sum_{r=0..floor(m/4)} Sum_{j=0..floor((m-4*r)/2)} binomial(m-3*r-j,r)*binomial(m-4*r-j,j).
a(n) = 1+a(n-1)+a(n-2)+a(n-4) where a(0)=0, a(1)=1, a(2)=2, a(3)=4.
a(n) = A274110(n+1) - 1.
Comments