A368345 a(n) = Sum_{k=0..n} 4^(n-k) * floor(k/3).
0, 0, 0, 1, 5, 21, 86, 346, 1386, 5547, 22191, 88767, 355072, 1420292, 5681172, 22724693, 90898777, 363595113, 1454380458, 5817521838, 23270087358, 93080349439, 372321397763, 1489285591059, 5957142364244, 23828569456984, 95314277827944, 381257111311785
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-4,1,-5,4).
Programs
-
PARI
a(n, m=3, k=4) = (k^(n+1)\(k^m-1)-(n+1)\m)/(k-1);
Formula
a(n) = a(n-3) + (4^(n-2) - 1)/3.
a(n) = 1/3 * Sum_{k=0..n} floor(4^k/21) = Sum_{k=0..n} floor(4^k/63).
a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3) - 5*a(n-4) + 4*a(n-5).
G.f.: x^3/((1-x) * (1-4*x) * (1-x^3)).
a(n) = (floor(4^(n+1)/63) - floor((n+1)/3))/3.
E.g.f.: exp(-x/2)*(exp(3*x/2)*(4*exp(3*x) - 7 - 21*x) + 3*cos(sqrt(3)*x/2) + 9*sqrt(3)*sin(sqrt(3)*x/2))/189. - Stefano Spezia, Jun 07 2025