cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368351 a(n) is the minimal determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, -7, -105, -1810, -48098, -3051554, -175457984
Offset: 0

Views

Author

Stefano Spezia, Dec 22 2023

Keywords

Examples

			a(2) = -7:
  2, 3;
  3, 1.
a(3) = -105:
  2, 4, 5;
  4, 5, 1;
  5, 1, 3.
a(4) = -1810:
  4, 3, 7, 1;
  3, 7, 1, 2;
  7, 1, 2, 5;
  1, 2, 5, 6.
		

Crossrefs

Cf. A350931 (maximal absolute value), A368352 (maximal).
Cf. A350937 (minimal permanent), A350938 (maximal permanent).

Extensions

a(6)-a(7) from Lucas A. Brown, Aug 26 2024

A369947 a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.

Original entry on oeis.org

1, 2, 11, 286, 86087, 9603283, 1764195984
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Examples

			a(2) = 11:
  3, 2;
  2, 5.
a(3) = 286:
   3, 11, 5;
  11,  5, 7;
   5,  7, 2.
a(4) = 86087:
   7,  3, 13, 17;
   3, 13, 17,  2;
  13, 17,  2, 11;
  17,  2, 11,  5.
		

Crossrefs

Cf. A369946 (minimal), A350933 (maximal absolute value), A369949, A350940 (maximal permanent).

Programs

  • Mathematica
    a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import primerange, prime, Matrix
    def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024

A369942 a(n) is the number of distinct values of the determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.

Original entry on oeis.org

1, 1, 3, 49, 1480, 50522, 2517213
Offset: 0

Views

Author

Stefano Spezia, Feb 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := CountDistinct[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Range[2 n - 1]], i], n],{Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
  • PARI
    a(n) = my(v=[1..2*n-1], list=List()); forperm(v, p, listput(list, matdet(matrix(n, n, i, j, p[i+j-1])));); #Set(list); \\ Michel Marcus, Feb 08 2024
    
  • Python
    from itertools import permutations
    from sympy import Matrix
    def A369942(n): return len({Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(range(1,n<<1))}) # Chai Wah Wu, Feb 12 2024

Extensions

a(6) from Michel Marcus, Feb 08 2024
Showing 1-3 of 3 results.