A368351
a(n) is the minimal determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.
Original entry on oeis.org
1, 1, -7, -105, -1810, -48098, -3051554, -175457984
Offset: 0
a(2) = -7:
2, 3;
3, 1.
a(3) = -105:
2, 4, 5;
4, 5, 1;
5, 1, 3.
a(4) = -1810:
4, 3, 7, 1;
3, 7, 1, 2;
7, 1, 2, 5;
1, 2, 5, 6.
A369947
a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.
Original entry on oeis.org
1, 2, 11, 286, 86087, 9603283, 1764195984
Offset: 0
a(2) = 11:
3, 2;
2, 5.
a(3) = 286:
3, 11, 5;
11, 5, 7;
5, 7, 2.
a(4) = 86087:
7, 3, 13, 17;
3, 13, 17, 2;
13, 17, 2, 11;
17, 2, 11, 5.
-
a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
-
a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
-
from itertools import permutations
from sympy import primerange, prime, Matrix
def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024
A369942
a(n) is the number of distinct values of the determinant of an n X n Hankel matrix using the integers 1 to 2*n - 1.
Original entry on oeis.org
1, 1, 3, 49, 1480, 50522, 2517213
Offset: 0
-
a[n_] := CountDistinct[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Range[2 n - 1]], i], n],{Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
-
a(n) = my(v=[1..2*n-1], list=List()); forperm(v, p, listput(list, matdet(matrix(n, n, i, j, p[i+j-1])));); #Set(list); \\ Michel Marcus, Feb 08 2024
-
from itertools import permutations
from sympy import Matrix
def A369942(n): return len({Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(range(1,n<<1))}) # Chai Wah Wu, Feb 12 2024
Showing 1-3 of 3 results.