A368353
a(n) is the minimal determinant of an n X n Hankel matrix using the integers 0 to 2*(n - 1).
Original entry on oeis.org
1, 0, -4, -74, -1297, -39837
Offset: 0
a(2) = -4:
1, 2;
2, 0.
a(3) = -74:
1, 3, 4;
3, 4, 0;
4, 0, 2.
a(4) = -1297:
3, 2, 6, 0;
2, 6, 0, 1;
6, 0, 1, 4;
0, 1, 4, 5.
A368354
a(n) is the maximal determinant of an n X n Hankel matrix using the integers 0 to 2*(n - 1).
Original entry on oeis.org
1, 0, 2, 31, 1781, 58180
Offset: 0
a(2) = 2:
2, 0;
0, 1.
a(3) = 31:
1, 4, 2;
4, 2, 3;
2, 3, 0.
a(4) = 1781:
1, 2, 5, 6;
2, 5, 6, 0;
5, 6, 0, 4;
6, 0, 4, 3.
A369944
a(n) is the number of distinct values of the determinant of an n X n Hankel matrix using the integers 0 to 2*(n - 1).
Original entry on oeis.org
1, 1, 3, 44, 1292, 43958, 2204010
Offset: 0
-
a[n_] := CountDistinct[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Range[0, 2 n - 2]], i], n],{Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1},Array[a, 5]]
-
a(n) = my(v=[0..2*n-2], list=List()); forperm(v, p, listput(list, matdet(matrix(n, n, i, j, p[i+j-1])));); #Set(list); \\ Michel Marcus, Feb 08 2024
-
from itertools import permutations
from sympy import Matrix
def A369944(n): return len({Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(range((n<<1)-1))}) # Chai Wah Wu, Feb 12 2024
Showing 1-3 of 3 results.
Comments