A368397 a(n) is the least number k not ending in 0 such that k^n has at least n 0's in its decimal expansion.
101, 101, 101, 101, 101, 351, 518, 194, 1001, 951, 3231, 3757, 2169, 999, 1397, 2273, 9723, 8683, 13219, 6152, 15204, 18898, 39484, 10001, 10001, 35586, 46564, 35085, 71061, 100001, 43055, 43642, 83055, 44411, 36802, 94501, 135852, 52299, 174062, 121201, 173388, 119032, 215365, 94996, 201312
Offset: 1
Examples
a(6) = 351 because 351^6 = 1870004703089601 has 6 0's, and this is the smallest number not ending in 0 that works.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..320
Programs
-
Maple
f:= proc(n) local k; for k from 2 do if k mod 10 <> 0 and numboccur(0, convert(k^n,base,10)) >= n then return k fi od end proc: map(f, [$1..50]);
-
Mathematica
a={}; For[n=1, n<=45, n++, k=1; While[Mod[k,10]==0 || Count[IntegerDigits[k^n,10],0] < n, k++]; AppendTo[a,k]]; a (* Stefano Spezia, Dec 22 2023 *)
-
PARI
a(n) = { forstep(i = 11, oo, [1,1,1,1,1,1,1,1,2], d = digits(i^n); t = 0; for(j = 1, #d, t+=(!d[j]) ); if(t >= n, return(i) ) ) } \\ David A. Corneth, Dec 22 2023
-
Python
from gmpy2 import digits from itertools import count def a(n): return next(k for k in count(1) if k%10 and digits(k**n).count('0')>=n) print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Jan 05 2024