cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368190 Number of (undirected) cycles in the n-Dorogovtsev-Goltsev-Mendes graph.

Original entry on oeis.org

0, 1, 11, 249, 74835, 5890739121, 34755832523270764251, 1207969003612007237832573159205646499369, 1459189113687796591938380205390010178829792070192521048490799792728844237848995
Offset: 0

Views

Author

Eric W. Weisstein, Dec 16 2023

Keywords

Comments

Using the indexing convention that DGM(0) = P_2.
For n > 0, DGM(n) contains a unique longest cycle of length 3*2^(n-1).

Crossrefs

Cf. A007018, A368456, A367967 (5-cycles), A367968 (6-cycles).

Programs

  • PARI
    a(n) = {my(t=0,b=1); for(k=1, n, t = 3*t + b^3; b += b^2); t} \\ Andrew Howroyd, Dec 30 2023

Formula

a(n) = 3*a(n-1) + A007018(n-1)^3 for n > 0. - Andrew Howroyd, Dec 30 2023

Extensions

Offset corrected and a(5) from Eric W. Weisstein, Dec 29 2023
Terms a(6) and beyond from Andrew Howroyd, Dec 30 2023

A387435 Number of dominating sets in the n-Dorogovtsev-Goltsev-Mendes graph.

Original entry on oeis.org

3, 7, 45, 13293, 461504710485, 37306936154345310416554765472710125
Offset: 0

Views

Author

Eric W. Weisstein, Aug 29 2025

Keywords

Comments

a(6) has 104 decimal digits. - Andrew Howroyd, Aug 31 2025

Crossrefs

Cf. A115098 (domination number), A368456.

Programs

  • Mathematica
    Join[{3}, Map[{1, 2, 1} . # &, NestList[Function[{p2, q1, q2}, {p2 (p2^2 + q1^2), q1^2 (q2 + p2), q2 (q1^2 + q2^2)}] @@ # &, {1, 2, 2}, 7]]] (* Eric W. Weisstein, Sep 03 2025 *)
  • PARI
    step(v)={my([p2,q1,q2]=v); [p2*(p2^2+q1^2), q1^2*(q2+p2), q2*(q1^2+q2^2)]}
    a(n)={if(n==0, 3, my(v=[1,2,2]); for(i=2, n, v=step(v)); v[1]+2*v[2]+v[3])} \\ Andrew Howroyd, Aug 31 2025

Extensions

a(4) onwards from Andrew Howroyd, Aug 29 2025
Showing 1-2 of 2 results.