cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368493 T(n,m) is the number of m-dimensional isotropic subspaces of a 2n-dimensional symplectic space over Z/2, n >= 0 and 0 <= m <= n.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 63, 315, 135, 1, 255, 5355, 11475, 2295, 1, 1023, 86955, 782595, 782595, 75735, 1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775, 1, 16383, 22362795, 3268162755, 55558766835, 112909751955, 26883274275, 635037975
Offset: 0

Views

Author

Simon Burton, Dec 27 2023

Keywords

Comments

The number of m-dimensional isotropic subspaces of an n-dimensional symplectic space over Z/2.

Examples

			Triangle begins:
  1;
  1,    3;
  1,   15,      15;
  1,   63,     315,      135;
  1,  255,    5355,    11475,      2295;
  1, 1023,   86955,   782595,    782595,     75735;
  1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775;
  ...
		

Crossrefs

Main diagonal gives A028362.
Cf. A022166.

Programs

  • Mathematica
    T[n_,m_]:=Product[(2^(2i)-1),{i,n-m+1,n}]/Product[(2^i-1),{i,1,m}]; Table[T[n,m],{n,0,7},{m,0,n}] (* Stefano Spezia, Dec 28 2023 *)
  • PARI
    T(n,m) = prod(i=n-m+1, n, 2^(2*i)-1)/prod(i=1, m, 2^i-1); \\ Michel Marcus, Dec 27 2023
  • Python
    from math import prod
    q = 2
    N = lambda n, m : (prod([q**(2*i)-1 for i in range(n-m+1, n+1)])//prod([q**i-1 for i in range(1, m+1)]))
    print([N(n, m) for n in range(8) for m in range(n+1)])
    

Formula

T(n,m) = Product_{i=n-m+1..n} (2^(2i)-1)/Product_{i=1..m} (2^i-1).