cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A368711 The maximal exponent in the prime factorization of the exponentially odd numbers (A268335).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

Differs from A368472 at n = 1, 154, 610, 707, 762, ... .

Crossrefs

Similar sequences: A368710, A368712, A368713.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
  • PARI
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; if(vecprod(e)%2, print1(vecmax(e), ", ")));}

Formula

a(n) = A051903(A268335(n)).
a(n) is odd for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{k>=1} (1 - Product_{p prime} (1 - 1/(p^(2*k-1)*(p^2+p-1)))) = 1.34877064483679975726... .

A368712 The maximal exponent in the prime factorization of the cubefree numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

The asymptotic density of occurrences of 1 is zeta(3)/zeta(2) = 0.730762... (A253905), and the asymptotic density of occurrences of 2 is 1 - zeta(3)/zeta(2) = 0.269237... .

Crossrefs

Programs

  • Mathematica
    s[n_] := If[n == 1, 0, Max @@ Last /@ FactorInteger[n]]; s /@ Select[Range[100], Max[FactorInteger[#][[;; , 2]]] < 3 &]
    (* or *)
    f[n_] := Module[{e = Max @@ FactorInteger[n][[;; , 2]]}, If[e < 3, e, Nothing]]; f[1] = 0; Array[f, 100]
  • PARI
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(e < 3, print1(e, ", ")));}
    
  • Python
    from sympy import mobius, integer_nthroot, factorint
    def A368712(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return max(factorint(m).values(),default=0) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A051903(A004709(n)).
a(n) = 2 - A008966(A004709(n)) for n >= 2.
Except for n = 1, a(n) = 1 or 2.
a(n) = 1 if and only if A004709(n) is squarefree (A005117).
a(n) = 2 if and only if A004709(n) > 1 and is nonsquarefree (A013929), i.e., A004709(n) is in A067259.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - zeta(3)/zeta(2) = 2 - A253905 = 1.269237030598... .

A368713 The maximal exponent in the prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 3, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 4, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 6, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

The terms of A051903 that are larger than 1.

Crossrefs

Similar sequences: A368710, A368711, A368712.

Programs

  • Mathematica
    s[n_] := Max @@ Last /@ FactorInteger[n]; s /@ Select[Range[250], !SquareFreeQ[#] &]
    (* or *)
    f[n_] := Module[{e = Max @@ FactorInteger[n][[;; , 2]]}, If[e > 1, e, Nothing]]; Array[f, 250]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(e > 1, print1(e, ", ")));}

Formula

a(n) = A051903(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (c * zeta(2) - 1)/(zeta(2) - 1) = 2.798673520766..., where c = 1.705211... is Niven's constant (A033150).

A372603 The maximal exponent in the prime factorization of the powerful part of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A275812 at n = 36, and from A212172 at n = 37.

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 0, n]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = if(n == 1, 0, n);
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A057521(n)).
a(n) = A087156(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 1/zeta(2) + Sum_{i>=2} (1 - 1/zeta(i)) = A033150 - A059956 = 1.09728403825134113562... .

A372466 The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Amiram Eldar, May 01 2024

Keywords

Comments

All the terms are of the form 2^k-1 (A000225).

Crossrefs

Programs

  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q[# + 1] &], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(apply(x -> x + 1, e))), print1(vecmax(e), ", "))); }

Formula

a(n) = A051903(A036537(n)).
a(n) = 2^A372467(n) - 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(1) + Sum_{k>=2} (2^k-1) * (d(k) - d(k-1))) / A327839 = 1.25306367526166810834..., where d(k) = Product_{p prime} (1 - 1/p + Sum_{i=1..k} (1/p^(2^i-1)-1/p^(2^i))).

A368925 The minimal exponent in the prime factorization of the powerful numbers.

Original entry on oeis.org

0, 2, 3, 2, 4, 2, 3, 5, 2, 2, 6, 2, 4, 2, 2, 2, 3, 7, 2, 2, 2, 2, 3, 2, 5, 8, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 9, 2, 2, 4, 3, 2, 2, 6, 2, 2, 2, 3, 2, 2, 2, 2, 3, 10, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 11, 2, 7, 3, 2, 2, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := If[n == 1, 0, Min @@ Last /@ FactorInteger[n]]; s /@ Select[Range[3000], # == 1 || Min[FactorInteger[#][[;;, 2]]] > 1 &]
    (* or *)
    f[n_] := Module[{e = Min[FactorInteger[n][[;; , 2]]]}, If[n == 1, 0, If[e > 1, e, Nothing]]]; Array[f, 3000]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, if(k == 1, print1(0, ", "), e = vecmin(factor(k)[,2]); if(e > 1, print1(e, ", "))));}

Formula

a(n) = A051904(A001694(n)).
a(n) >= 2 for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2.
Showing 1-6 of 6 results.